reworked TRNG architecture and interface

This commit is contained in:
stnolting 2020-09-11 15:03:38 +02:00
parent c0cc9f269b
commit 89f64c9569
2 changed files with 339 additions and 118 deletions

View file

@ -41,7 +41,7 @@ package neorv32_package is
-- Architecture Constants -----------------------------------------------------------------
-- -------------------------------------------------------------------------------------------
constant data_width_c : natural := 32; -- data width - FIXED!
constant hw_version_c : std_ulogic_vector(31 downto 0) := x"01040002"; -- no touchy!
constant hw_version_c : std_ulogic_vector(31 downto 0) := x"01040004"; -- no touchy!
constant pmp_max_r_c : natural := 8; -- max PMP regions
constant ipb_entries_c : natural := 2; -- entries in instruction prefetch buffer, must be a power of 2, default=2
@ -129,11 +129,10 @@ package neorv32_package is
constant trng_base_c : std_ulogic_vector(data_width_c-1 downto 0) := x"FFFFFFC0"; -- base address, fixed!
constant trng_size_c : natural := 2*4; -- bytes, fixed!
constant trng_ctrl_addr_c : std_ulogic_vector(31 downto 0) := std_ulogic_vector(unsigned(trng_base_c) + x"00000000");
constant trng_data_addr_c : std_ulogic_vector(31 downto 0) := std_ulogic_vector(unsigned(trng_base_c) + x"00000004");
-- RESERVED --
--constant ???_base_c : std_ulogic_vector(data_width_c-1 downto 0) := x"FFFFFFC8"; -- base address, fixed!
--constant ???_size_c : natural := 6*4; -- bytes, fixed!
--constant ???_base_c : std_ulogic_vector(data_width_c-1 downto 0) := x"FFFFFFC4"; -- base address, fixed!
--constant ???_size_c : natural := 7*4; -- bytes, fixed!
-- System Information Memory (with SIMULATION output) (SYSINFO) --
constant sysinfo_base_c : std_ulogic_vector(data_width_c-1 downto 0) := x"FFFFFFE0"; -- base address, fixed!
@ -315,7 +314,7 @@ package neorv32_package is
constant alu_cmd_xor_c : std_ulogic_vector(2 downto 0) := "100"; -- r <= A xor B
constant alu_cmd_or_c : std_ulogic_vector(2 downto 0) := "101"; -- r <= A or B
constant alu_cmd_and_c : std_ulogic_vector(2 downto 0) := "110"; -- r <= A and B
constant alu_cmd_bitc_c : std_ulogic_vector(2 downto 0) := "111"; -- r <= A and (not B)
constant alu_cmd_bitm_c : std_ulogic_vector(2 downto 0) := "111"; -- r <= bit manipulation
-- Trap ID Codes --------------------------------------------------------------------------
-- -------------------------------------------------------------------------------------------

View file

@ -1,21 +1,11 @@
-- #################################################################################################
-- # << NEORV32 - True Random Number Generator (TRNG) >> #
-- # ********************************************************************************************* #
-- # This unit implements a true random number generator which uses an inverter chain as entropy #
-- # source. The inverter chain is constructed as GARO (Galois Ring Oscillator) TRNG. The single #
-- # inverters are connected via simple latches that are used to enbale/disable the TRNG. Also, #
-- # these latches are used as additional delay element. By using unique enable signals for each #
-- # latch, the synthesis tool cannot "optimize" one of the inverters out of the design. Further- #
-- # more, the latches prevent the synthesis tool from detecting combinatorial loops. #
-- # The output of the GARO is de-biased by a simple von Neuman random extractor and is further #
-- # post-processed by a 16-bit LFSR for improved whitening. #
-- # This unit implements a true random number generator which uses several GARO chain as entropy #
-- # source. The outputs of all chains are XORed and de-biased using a John von Neumann randomness #
-- # extractor. The output is further post-processed by a simple LFSR for improved whitening. #
-- # #
-- # Sources: #
-- # - GARO: "Experimental Assessment of FIRO- and GARO-based Noise Sources for Digital TRNG #
-- # Designs on FPGAs" by Martin Schramm, Reiner Dojen and Michael Heigly, 2017 #
-- # - Latches for platform independence: "Extended Abstract: The Butterfly PUF Protecting IP #
-- # on every FPGA" by Sandeep S. Kumar, Jorge Guajardo, Roel Maesyz, Geert-Jan Schrijen and #
-- # Pim Tuyls, Philips Research Europe, 2008 #
-- # - Von Neumann De-Biasing: "Iterating Von Neumann's Post-Processing under Hardware #
-- # Constraints" by Vladimir Rozic, Bohan Yang, Wim Dehaene and Ingrid Verbauwhede, 2016 #
-- # ********************************************************************************************* #
@ -73,46 +63,77 @@ end neorv32_trng;
architecture neorv32_trng_rtl of neorv32_trng is
-- advanced configuration --------------------------------------------------------------------------------
constant num_inv_c : natural := 16; -- length of GARO inverter chain (default=16, max=16)
constant lfsr_taps_c : std_ulogic_vector(15 downto 0) := "1101000000001000"; -- Fibonacci LFSR feedback taps
constant num_inv_c : natural := 15; -- length of GARO inverter chain (default=15, has to be odd)
constant num_garos_c : natural := 2; -- number of GARO elements (default=2)
constant lfsr_taps_c : std_ulogic_vector(7 downto 0) := "10111000"; -- Fibonacci post-processing LFSR feedback taps
constant lfsr_en_c : boolean := true; -- use LFSR-based post-processing
type tap_mask_t is array (0 to num_garos_c-1) of std_ulogic_vector(num_inv_c-2 downto 0);
constant tap_mask : tap_mask_t := ( -- GARO tap mask(s), number of set bits has to be even
"11110000000000", -- "slow" osc
"11001100110000" -- "fast" osc
);
-- -------------------------------------------------------------------------------------------------------
-- control register bits --
constant ctrl_taps_lsb_c : natural := 0; -- -/w: TAP 0 enable
constant ctrl_taps_msb_c : natural := 15; -- -/w: TAP 15 enable
constant ctrl_en_c : natural := 31; -- r/w: TRNG enable
-- data register bits --
constant ctrl_data_lsb_c : natural := 0; -- r/-: Random data bit 0
constant ctrl_data_msb_c : natural := 15; -- r/-: Random data bit 15
constant ctrl_rnd_valid_c : natural := 31; -- r/-: Output byte valid
constant ctrl_data_lsb_c : natural := 0; -- r/-: Random data bit LSB
constant ctrl_data_msb_c : natural := 7; -- r/-: Random data bit MSB
constant ctrl_data_valid_c : natural := 15; -- r/-: Output data valid
constant ctrl_err_zero_c : natural := 16; -- r/-: stuck at 0 error
constant ctrl_err_one_c : natural := 17; -- r/-: stuck at 1 error
constant ctrl_en_c : natural := 31; -- r/w: TRNG enable
-- IO space: module base address --
constant hi_abb_c : natural := index_size_f(io_size_c)-1; -- high address boundary bit
constant lo_abb_c : natural := index_size_f(trng_size_c); -- low address boundary bit
-- Component: GARO Element --
component neorv32_trng_garo_element
generic (
NUM_INV : natural := 16 -- number of inverters in chain
);
port (
clk_i : in std_ulogic;
enable_i : in std_ulogic;
enable_o : out std_ulogic;
mask_i : in std_ulogic_vector(NUM_INV-2 downto 0);
data_o : out std_ulogic;
error0_o : out std_ulogic;
error1_o : out std_ulogic
);
end component;
-- access control --
signal acc_en : std_ulogic; -- module access enable
signal addr : std_ulogic_vector(31 downto 0); -- access address
signal wren : std_ulogic; -- full word write enable
signal rden : std_ulogic; -- read enable
-- random number generator --
signal rnd_inv : std_ulogic_vector(num_inv_c-1 downto 0); -- inverter chain
signal rnd_enable_sreg : std_ulogic_vector(num_inv_c-1 downto 0); -- enable shift register
signal rnd_enable : std_ulogic;
signal tap_config : std_ulogic_vector(15 downto 0);
signal rnd_sync : std_ulogic_vector(02 downto 0); -- metastability filter & de-biasing
signal ready_ff : std_ulogic; -- new random data available
signal rnd_sreg : std_ulogic_vector(15 downto 0); -- sample shift reg
signal rnd_cnt : std_ulogic_vector(04 downto 0);
signal new_sample : std_ulogic; -- new output byte ready
signal rnd_data : std_ulogic_vector(15 downto 0); -- random data register (read-only)
-- garo array --
signal garo_en_in : std_ulogic_vector(num_garos_c-1 downto 0);
signal garo_en_out : std_ulogic_vector(num_garos_c-1 downto 0);
signal garo_data : std_ulogic_vector(num_garos_c-1 downto 0);
signal garo_err_zero : std_ulogic_vector(num_garos_c-1 downto 0);
signal garo_err_one : std_ulogic_vector(num_garos_c-1 downto 0);
signal garo_res : std_ulogic;
signal garo_err0 : std_ulogic;
signal garo_err1 : std_ulogic;
-- Randomness extractor (von Neumann De-Biasing) --
signal db_state : std_ulogic;
signal db_enable : std_ulogic; -- valid data from de-biasing
signal db_data : std_ulogic; -- actual data from de-biasing
-- de-biasing --
signal db_data : std_ulogic_vector(2 downto 0);
signal db_state : std_ulogic; -- process de-biasing every second cycle
signal rnd_valid : std_ulogic;
signal rnd_data : std_ulogic;
-- processing core --
signal rnd_enable : std_ulogic;
signal rnd_cnt : std_ulogic_vector(3 downto 0);
signal rnd_sreg : std_ulogic_vector(7 downto 0);
signal rnd_output : std_ulogic_vector(7 downto 0);
signal rnd_ready : std_ulogic;
-- health check --
signal rnd_error_zero : std_ulogic; -- stuck at zero
signal rnd_error_one : std_ulogic; -- stuck at one
begin
@ -131,64 +152,93 @@ begin
if rising_edge(clk_i) then
ack_o <= acc_en and (rden_i or wren_i);
-- write access --
if (wren = '1') then
if (addr = trng_ctrl_addr_c) then
tap_config <= data_i(tap_config'left downto 0);
rnd_enable <= data_i(ctrl_en_c);
end if;
if (wren = '1') and (addr = trng_ctrl_addr_c) then
rnd_enable <= data_i(ctrl_en_c);
end if;
-- read access --
data_o <= (others => '0');
if (rden = '1') then
if (addr = trng_ctrl_addr_c) then
data_o(ctrl_taps_msb_c downto ctrl_taps_lsb_c) <= tap_config;
data_o(ctrl_en_c) <= rnd_enable;
else -- trng_data_addr_c
data_o(ctrl_data_msb_c downto ctrl_data_lsb_c) <= rnd_data;
data_o(ctrl_rnd_valid_c) <= ready_ff;
end if;
if (rden = '1') and (addr = trng_ctrl_addr_c) then
data_o(ctrl_data_msb_c downto ctrl_data_lsb_c) <= rnd_output;
data_o(ctrl_data_valid_c) <= rnd_ready;
data_o(ctrl_err_zero_c) <= rnd_error_zero;
data_o(ctrl_err_one_c) <= rnd_error_one;
data_o(ctrl_en_c) <= rnd_enable;
end if;
end if;
end process rw_access;
-- True Random Generator ------------------------------------------------------------------
-- Entropy Source -------------------------------------------------------------------------
-- -------------------------------------------------------------------------------------------
entropy_source: process(rnd_enable_sreg, rnd_enable, rnd_inv, tap_config)
neorv32_trng_garo_element_inst:
for i in 0 to num_garos_c-1 generate
neorv32_trng_garo_element_inst_i: neorv32_trng_garo_element
generic map (
NUM_INV => num_inv_c -- number of inverters in chain
)
port map (
clk_i => clk_i,
enable_i => garo_en_in(i),
enable_o => garo_en_out(i),
mask_i => tap_mask(i),
data_o => garo_data(i),
error0_o => garo_err_zero(i),
error1_o => garo_err_one(i)
);
end generate;
-- GARO element connection --
garo_intercon: process(rnd_enable, garo_en_out, garo_data, garo_err_zero, garo_err_one)
variable data_v : std_ulogic;
variable err0_v : std_ulogic;
variable err1_v : std_ulogic;
begin
for i in 0 to num_inv_c-1 loop
if (rnd_enable = '0') then -- start with a defined state (latch reset)
rnd_inv(i) <= '0';
-- uniquely enable latches to prevent synthesis from removing chain elements
elsif (rnd_enable_sreg(i) = '1') then -- latch enable
-- here we have the inverter chain --
if (i = num_inv_c-1) then -- left most inverter?
if (tap_config(i) = '1') then
rnd_inv(i) <= not rnd_inv(0); -- direct input of right most inverter (= output signal)
else
rnd_inv(i) <= '0';
end if;
else
if (tap_config(i) = '1') then
rnd_inv(i) <= not (rnd_inv(i+1) xor rnd_inv(0)); -- use final output as feedback
else
rnd_inv(i) <= not rnd_inv(i+1); -- normal chain: use previous inverter's output as input
end if;
end if;
-- enable chain --
for i in 0 to num_garos_c-1 loop
if (i = 0) then
garo_en_in(i) <= rnd_enable;
else
garo_en_in(i) <= garo_en_out(i-1);
end if;
end loop; -- i
end process entropy_source;
-- data & status --
data_v := garo_data(0);
err0_v := garo_err_zero(0);
err1_v := garo_err_one(0);
for i in 1 to num_garos_c-1 loop
data_v := data_v xor garo_data(i);
err0_v := err0_v or garo_err_zero(i);
err1_v := err1_v or garo_err_one(i);
end loop; -- i
garo_res <= data_v;
garo_err0 <= err0_v;
garo_err1 <= err1_v;
end process garo_intercon;
-- unique enable signals for each inverter latch --
inv_enable: process(clk_i)
-- De-Biasing -----------------------------------------------------------------------------
-- -------------------------------------------------------------------------------------------
jvn_debiasing_sync: process(clk_i)
begin
if rising_edge(clk_i) then
-- using individual enable signals for each inverter - derived from a shift register - to prevent the synthesis tool
-- from removing all but one inverter (since they implement "logical identical functions")
-- this also allows to make the trng platform independent
rnd_enable_sreg <= rnd_enable_sreg(num_inv_c-2 downto 0) & rnd_enable; -- activate right most inverter first
db_data <= db_data(db_data'left-1 downto 0) & garo_res;
db_state <= (not db_state) and rnd_enable; -- just toggle when enabled -> process in every second cycle
end if;
end process inv_enable;
end process jvn_debiasing_sync;
-- John von Neumann De-Biasing --
jvn_debiasing: process(db_state, db_data)
variable tmp_v : std_ulogic_vector(2 downto 0);
begin
-- check groups of two non-overlapping bits from the input stream
tmp_v := db_state & db_data(db_data'left downto db_data'left-1);
case tmp_v is
when "101" => rnd_valid <= '1'; rnd_data <= '1'; -- rising edge -> '1'
when "110" => rnd_valid <= '1'; rnd_data <= '0'; -- falling edge -> '0'
when others => rnd_valid <= '0'; rnd_data <= '-'; -- invalid
end case;
end process jvn_debiasing;
-- Processing Core ------------------------------------------------------------------------
@ -196,55 +246,227 @@ begin
processing_core: process(clk_i)
begin
if rising_edge(clk_i) then
-- synchronize output of GARO --
rnd_sync <= rnd_sync(1 downto 0) & rnd_inv(0); -- no more metastability
-- von Neumann De-Biasing state --
db_state <= (not db_state) and rnd_enable; -- just toggle -> process in every second cycle
-- sample random data & post-processing --
-- sample random data and apply post-processing --
if (rnd_enable = '0') then
rnd_cnt <= (others => '0');
rnd_sreg <= (others => '0');
elsif (db_enable = '1') then -- valid de-biased output?
if (rnd_cnt = "10000") then
elsif (rnd_valid = '1') and (garo_en_out(garo_en_out'left) = '1') then -- valid random sample and GAROs ready?
if (rnd_cnt = "1000") then
rnd_cnt <= (others => '0');
else
rnd_cnt <= std_ulogic_vector(unsigned(rnd_cnt) + 1);
end if;
rnd_sreg <= rnd_sreg(rnd_sreg'left-1 downto 0) & (xnor_all_f(rnd_sreg and lfsr_taps_c) xor db_data); -- LFSR post-processing
-- rnd_sreg <= rnd_sreg(rnd_sreg'left-1 downto 0) & db_data; -- LFSR post-processing
if (lfsr_en_c = true) then -- LFSR post-processing
rnd_sreg <= rnd_sreg(rnd_sreg'left-1 downto 0) & (xnor_all_f(rnd_sreg and lfsr_taps_c) xnor rnd_data);
else -- NO post-processing
rnd_sreg <= rnd_sreg(rnd_sreg'left-1 downto 0) & rnd_data;
end if;
end if;
-- data output register --
if (new_sample = '1') then
rnd_data <= rnd_sreg;
if (rnd_cnt = "1000") then
rnd_output <= rnd_sreg;
end if;
-- health check error --
if (rnd_enable = '0') then
rnd_error_zero <= '0';
rnd_error_one <= '0';
else
rnd_error_zero <= rnd_error_zero or garo_err0;
rnd_error_one <= rnd_error_one or garo_err1;
end if;
-- data ready flag --
if (rnd_enable = '0') or (rden = '1') then -- clear when deactivated or on data read
ready_ff <= '0';
elsif (new_sample = '1') then
ready_ff <= '1';
if (rnd_cnt = "1000") then -- new sample ready?
rnd_ready <= '1';
elsif (rnd_enable = '0') or (rden = '1') then -- clear when deactivated or on data read
rnd_ready <= '0';
end if;
end if;
end process processing_core;
-- John von Neumann De-Biasing --
debiasing: process(db_state, rnd_sync)
variable tmp_v : std_ulogic_vector(2 downto 0);
begin
-- check groups of two non-overlapping bits from the input stream
tmp_v := db_state & rnd_sync(2 downto 1);
case tmp_v is
when "101" => db_enable <= '1'; db_data <= '1'; -- rising edge -> '1'
when "110" => db_enable <= '1'; db_data <= '0'; -- falling edge -> '0'
when others => db_enable <= '0'; db_data <= '0'; -- invalid
end case;
end process debiasing;
-- new valid byte available? --
new_sample <= '1' when (rnd_cnt = "10000") and (rnd_enable = '1') and (db_enable = '1') else '0';
end neorv32_trng_rtl;
-- ############################################################################################################################
-- ############################################################################################################################
-- #################################################################################################
-- # << NEORV32 - True Random Number Generator (TRNG) - GARO Chain-Based Entropy Source >> #
-- # ********************************************************************************************* #
-- # An inverter chain (ring oscillator) is used as entropy source. The inverter chain is #
-- # constructed as GARO (Galois Ring Oscillator) TRNG, which is an "asynchronous" LFSR. The #
-- # single inverters are connected via latches that are used to enbale/disable the TRNG. Also, #
-- # these latches are used as additional delay element. By using unique enable signals for each #
-- # latch, the synthesis tool cannot "optimize" (=remove) any of the inverters out of the design. #
-- # Furthermore, the latches prevent the synthesis tool from detecting combinatorial loops. #
-- # #
-- # Sources: #
-- # - GARO: "Experimental Assessment of FIRO- and GARO-based Noise Sources for Digital TRNG #
-- # Designs on FPGAs" by Martin Schramm, Reiner Dojen and Michael Heigly, 2017 #
-- # - Latches for platform independence: "Extended Abstract: The Butterfly PUF Protecting IP #
-- # on every FPGA" by Sandeep S. Kumar, Jorge Guajardo, Roel Maesyz, Geert-Jan Schrijen and #
-- # Pim Tuyls, Philips Research Europe, 2008 #
-- # ********************************************************************************************* #
-- # BSD 3-Clause License #
-- # #
-- # Copyright (c) 2020, Stephan Nolting. All rights reserved. #
-- # #
-- # Redistribution and use in source and binary forms, with or without modification, are #
-- # permitted provided that the following conditions are met: #
-- # #
-- # 1. Redistributions of source code must retain the above copyright notice, this list of #
-- # conditions and the following disclaimer. #
-- # #
-- # 2. Redistributions in binary form must reproduce the above copyright notice, this list of #
-- # conditions and the following disclaimer in the documentation and/or other materials #
-- # provided with the distribution. #
-- # #
-- # 3. Neither the name of the copyright holder nor the names of its contributors may be used to #
-- # endorse or promote products derived from this software without specific prior written #
-- # permission. #
-- # #
-- # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS #
-- # OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF #
-- # MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE #
-- # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, #
-- # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE #
-- # GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED #
-- # AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING #
-- # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED #
-- # OF THE POSSIBILITY OF SUCH DAMAGE. #
-- # ********************************************************************************************* #
-- # The NEORV32 Processor - https://github.com/stnolting/neorv32 (c) Stephan Nolting #
-- #################################################################################################
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library neorv32;
use neorv32.neorv32_package.all;
entity neorv32_trng_garo_element is
generic (
NUM_INV : natural := 15 -- number of inverters in chain
);
port (
clk_i : in std_ulogic;
enable_i : in std_ulogic;
enable_o : out std_ulogic;
mask_i : in std_ulogic_vector(NUM_INV-2 downto 0);
data_o : out std_ulogic;
error0_o : out std_ulogic;
error1_o : out std_ulogic
);
end neorv32_trng_garo_element;
architecture neorv32_trng_garo_element_rtl of neorv32_trng_garo_element is
-- debugging --
constant is_sim_c : boolean := false;
signal inv_chain : std_ulogic_vector(NUM_INV-1 downto 0); -- oscillator chain
signal enable_sreg : std_ulogic_vector(NUM_INV-1 downto 0); -- enable shift register
signal sync_ff : std_ulogic_vector(2 downto 0); -- synchronizer
signal cnt_zero, cnt_one : std_ulogic_vector(5 downto 0); -- stuck-at-0/1 counters
begin
-- Sanity Check ---------------------------------------------------------------------------
-- -------------------------------------------------------------------------------------------
assert ((NUM_INV mod 2) /= 0) report "NEORV32 TRNG.GARO_element: NUM_INV has to be odd." severity error;
-- Entropy Source -------------------------------------------------------------------------
-- -------------------------------------------------------------------------------------------
garo_chain: process(clk_i, enable_i, enable_sreg, mask_i, inv_chain)
begin
if (is_sim_c = false) then
for i in 0 to NUM_INV-1 loop -- inverters in chain
if (enable_i = '0') then -- start with a defined state (latch reset)
inv_chain(i) <= '0';
-- Using individual enable signals for each inverter - derived from a shift register - to prevent the synthesis tool
-- from removing all but one inverter (since they implement "logical identical functions").
-- This also allows to make the TRNG platform independent.
elsif (enable_sreg(i) = '1') then
-- here we have the inverter chain --
if (i = NUM_INV-1) then -- left-most inverter?
inv_chain(i) <= not inv_chain(0); -- direct input of right most inverter (= output signal)
else
-- if tap switch is ON: use final output XORed with previous inverter's output
-- if tap switch is OFF: just use previous inverter's output
inv_chain(i) <= not (inv_chain(i+1) xor (inv_chain(0) and mask_i(i)));
end if;
end if;
end loop; -- i
else -- simulate as simple LFSR
if rising_edge(clk_i) then
if (enable_i = '0') then
inv_chain <= (others => '0');
else
inv_chain(NUM_INV-1 downto 0) <= inv_chain(inv_chain'left-1 downto 0) & xnor_all_f(inv_chain(NUM_INV-2 downto 0) and mask_i);
end if;
end if;
end if;
end process garo_chain;
-- Control --------------------------------------------------------------------------------
-- -------------------------------------------------------------------------------------------
ctrl_unit: process(clk_i)
begin
if rising_edge(clk_i) then
enable_sreg <= enable_sreg(enable_sreg'left-1 downto 0) & enable_i; -- activate right-most inverter first
sync_ff <= sync_ff(sync_ff'left-1 downto 0) & inv_chain(0); -- synchronize to prevent metastability
end if;
end process ctrl_unit;
-- output for "enable chain" --
enable_o <= enable_sreg(enable_sreg'left);
-- rnd output --
data_o <= sync_ff(sync_ff'left);
-- Health Check ---------------------------------------------------------------------------
-- -------------------------------------------------------------------------------------------
health_check: process(clk_i)
begin
if rising_edge(clk_i) then
if (enable_sreg(enable_sreg'left) = '0') then
cnt_zero <= (others => '0');
cnt_one <= (others => '0');
else
-- stuck-at-zero --
if (and_all_f(cnt_zero) = '0') then -- max not reached yet
error0_o <= '0';
if (sync_ff(sync_ff'left) = '0') then
cnt_zero <= std_ulogic_vector(unsigned(cnt_zero) + 1);
else
cnt_zero <= (others => '0');
end if;
else
error0_o <= '1';
end if;
-- stuck-at-one --
if (and_all_f(cnt_one) = '0') then -- max not reached yet
error1_o <= '0';
if (sync_ff(sync_ff'left) = '1') then
cnt_one <= std_ulogic_vector(unsigned(cnt_one) + 1);
else
cnt_one <= (others => '0');
end if;
else
error1_o <= '1';
end if;
end if;
end if;
end process health_check;
end neorv32_trng_garo_element_rtl;