neorv32/sw/example/cpu_test/main.c
2020-08-25 22:15:15 +02:00

937 lines
29 KiB
C

// #################################################################################################
// # << NEORV32 - CPU Test Program >> #
// # ********************************************************************************************* #
// # BSD 3-Clause License #
// # #
// # Copyright (c) 2020, Stephan Nolting. All rights reserved. #
// # #
// # Redistribution and use in source and binary forms, with or without modification, are #
// # permitted provided that the following conditions are met: #
// # #
// # 1. Redistributions of source code must retain the above copyright notice, this list of #
// # conditions and the following disclaimer. #
// # #
// # 2. Redistributions in binary form must reproduce the above copyright notice, this list of #
// # conditions and the following disclaimer in the documentation and/or other materials #
// # provided with the distribution. #
// # #
// # 3. Neither the name of the copyright holder nor the names of its contributors may be used to #
// # endorse or promote products derived from this software without specific prior written #
// # permission. #
// # #
// # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS #
// # OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF #
// # MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE #
// # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, #
// # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE #
// # GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED #
// # AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING #
// # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED #
// # OF THE POSSIBILITY OF SUCH DAMAGE. #
// # ********************************************************************************************* #
// # The NEORV32 Processor - https://github.com/stnolting/neorv32 (c) Stephan Nolting #
// #################################################################################################
/**********************************************************************//**
* @file cpu_test/main.c
* @author Stephan Nolting
* @brief Simple CPU test program.
**************************************************************************/
#include <neorv32.h>
/**********************************************************************//**
* @name User configuration
**************************************************************************/
/**@{*/
/** UART BAUD rate */
#define BAUD_RATE 19200
//** Set 1 for detailed exception debug information */
#define DETAILED_EXCEPTION_DEBUG 0
//** Set 1 to run memory tests */
#define PROBING_MEM_TEST 0
//** Reachable unaligned address */
#define ADDR_UNALIGNED 0x00000002
//** Unreachable aligned address */
#define ADDR_UNREACHABLE 0xFFFFFF00
/**@}*/
/**********************************************************************//**
* @name Exception handler acknowledges
**************************************************************************/
/**@{*/
/** Global volatile variable to store exception handler answer */
volatile uint32_t exception_handler_answer;
/**@}*/
// Prototypes
void global_trap_handler(void);
void test_ok(void);
void test_fail(void);
// Global variables (also test initialization of global vars here)
/// Global counter for failing tests
int cnt_fail = 0;
/// Global counter for successful tests
int cnt_ok = 0;
/// Global counter for total number of tests
int cnt_test = 0;
/**********************************************************************//**
* Unreachable memory-mapped register that should be always available
**************************************************************************/
#define MMR_UNREACHABLE (*(IO_REG32 (ADDR_UNREACHABLE)))
/**********************************************************************//**
* This program uses mostly synthetic case to trigger all implemented exceptions.
* Each exception is captured and evaluated for correct detection.
*
* @note This program requires the UART, MTIME and CLIC to be synthesized.
*
* @return Irrelevant.
**************************************************************************/
int main() {
register uint32_t tmp_a;
uint32_t i;
volatile uint32_t dummy_dst __attribute__((unused));
union {
uint64_t uint64;
uint32_t uint32[sizeof(uint64_t)/2];
} cpu_systime;
// reset performance counter
neorv32_cpu_set_minstret(0);
neorv32_cpu_set_mcycle(0);
// check if UART unit is implemented at all
if (neorv32_uart_available() == 0) {
return 0;
}
// check if MTIME unit is implemented at all
if (neorv32_mtime_available() == 0) {
return 0;
}
// init UART at default baud rate, no rx interrupt, no tx interrupt
neorv32_uart_setup(BAUD_RATE, 0, 0);
neorv32_mtime_set_time(0);
// set CMP of machine system timer MTIME to max to prevent an IRQ
uint64_t mtime_cmp_max = 0xFFFFFFFFFFFFFFFFL;
neorv32_mtime_set_timecmp(mtime_cmp_max);
// intro
neorv32_uart_printf("\n\n-==== CPU TEST ====-\n\n");
// show project credits
neorv32_rte_print_credits();
// show project license
neorv32_rte_print_license();
// show full HW config report
neorv32_rte_print_hw_config();
// intro2
neorv32_uart_printf("\n\nStarting tests...\n\n");
// configure RTE
neorv32_rte_setup(); // this will install a full-detailed debug handler for all traps
#if (DETAILED_EXCEPTION_DEBUG==0)
int install_err = 0;
// here we are overriding the default debug handlers
install_err += neorv32_rte_exception_install(RTE_TRAP_I_MISALIGNED, global_trap_handler);
install_err += neorv32_rte_exception_install(RTE_TRAP_I_ACCESS, global_trap_handler);
install_err += neorv32_rte_exception_install(RTE_TRAP_I_ILLEGAL, global_trap_handler);
install_err += neorv32_rte_exception_install(RTE_TRAP_BREAKPOINT, global_trap_handler);
install_err += neorv32_rte_exception_install(RTE_TRAP_L_MISALIGNED, global_trap_handler);
install_err += neorv32_rte_exception_install(RTE_TRAP_L_ACCESS, global_trap_handler);
install_err += neorv32_rte_exception_install(RTE_TRAP_S_MISALIGNED, global_trap_handler);
install_err += neorv32_rte_exception_install(RTE_TRAP_S_ACCESS, global_trap_handler);
install_err += neorv32_rte_exception_install(RTE_TRAP_MENV_CALL, global_trap_handler);
install_err += neorv32_rte_exception_install(RTE_TRAP_MTI, global_trap_handler);
install_err += neorv32_rte_exception_install(RTE_TRAP_MSI, global_trap_handler);
install_err += neorv32_rte_exception_install(RTE_TRAP_MTI, global_trap_handler);
install_err += neorv32_rte_exception_install(RTE_TRAP_FIRQ_0, global_trap_handler);
install_err += neorv32_rte_exception_install(RTE_TRAP_FIRQ_1, global_trap_handler);
install_err += neorv32_rte_exception_install(RTE_TRAP_FIRQ_2, global_trap_handler);
install_err += neorv32_rte_exception_install(RTE_TRAP_FIRQ_3, global_trap_handler);
if (install_err) {
neorv32_uart_printf("RTE install error (%i)!\n", install_err);
return 0;
}
#endif
// enable interrupt sources
install_err = neorv32_cpu_irq_enable(CPU_MIE_MSIE); // activate software interrupt
install_err += neorv32_cpu_irq_enable(CPU_MIE_MTIE); // activate timer interrupt
install_err += neorv32_cpu_irq_enable(CPU_MIE_MEIE); // activate external interrupt
install_err += neorv32_cpu_irq_enable(CPU_MIE_FIRQ0E);// activate fast interrupt channel 0
install_err += neorv32_cpu_irq_enable(CPU_MIE_FIRQ1E);// activate fast interrupt channel 1
install_err += neorv32_cpu_irq_enable(CPU_MIE_FIRQ2E);// activate fast interrupt channel 2
install_err += neorv32_cpu_irq_enable(CPU_MIE_FIRQ3E);// activate fast interrupt channel 3
if (install_err) {
neorv32_uart_printf("IRQ enable error (%i)!\n", install_err);
return 0;
}
// enable global interrupts
neorv32_cpu_eint();
exception_handler_answer = 0xFFFFFFFF;
// ----------------------------------------------------------
// Instruction memory test
// ----------------------------------------------------------
exception_handler_answer = 0xFFFFFFFF;
neorv32_uart_printf("IMEM_TEST: ");
#if (PROBING_MEM_TEST == 1)
cnt_test++;
register uint32_t dmem_probe_addr = SYSINFO_ISPACE_BASE;
uint32_t dmem_probe_cnt = 0;
while(1) {
asm volatile ("lb zero, 0(%[input_j])" : : [input_j] "r" (dmem_probe_addr));
if (exception_handler_answer == TRAP_CODE_L_ACCESS) {
break;
}
dmem_probe_addr++;
dmem_probe_cnt++;
}
neorv32_uart_printf("%u bytes (should be %u bytes) ", dmem_probe_cnt, SYSINFO_ISPACE_SIZE);
neorv32_uart_printf("@ 0x%x ", SYSINFO_ISPACE_BASE);
if (dmem_probe_cnt == SYSINFO_ISPACE_SIZE) {
test_ok();
}
else {
test_fail();
}
#else
neorv32_uart_printf("skipped (disabled)\n");
#endif
// ----------------------------------------------------------
// Data memory test
// ----------------------------------------------------------
exception_handler_answer = 0xFFFFFFFF;
neorv32_uart_printf("DMEM_TEST: ");
#if (PROBING_MEM_TEST == 1)
cnt_test++;
register uint32_t imem_probe_addr =SYSINFO_DSPACE_BASE;
uint32_t imem_probe_cnt = 0;
while(1) {
asm volatile ("lb zero, 0(%[input_j])" : : [input_j] "r" (imem_probe_addr));
if (exception_handler_answer == TRAP_CODE_L_ACCESS) {
break;
}
imem_probe_addr++;
imem_probe_cnt++;
}
neorv32_uart_printf("%u bytes (should be %u bytes) ", imem_probe_cnt, SYSINFO_DSPACE_SIZE);
neorv32_uart_printf("@ 0x%x ", SYSINFO_DSPACE_BASE);
if (imem_probe_cnt == SYSINFO_DSPACE_SIZE) {
test_ok();
}
else {
test_fail();
}
#else
neorv32_uart_printf("skipped (disabled)\n");
#endif
// ----------------------------------------------------------
// Test time[h] (must be == MTIME)
// ----------------------------------------------------------
neorv32_uart_printf("TIME[H]: ");
cnt_test++;
cpu_systime.uint64 = neorv32_cpu_get_systime();
uint64_t mtime_systime = neorv32_mtime_get_time();
// compute difference
mtime_systime = mtime_systime - cpu_systime.uint64;
if (mtime_systime < 100) { // diff should be pretty small
test_ok();
}
else {
test_fail();
}
// ----------------------------------------------------------
// Test fence instructions - make sure CPU does not crash here and throws no exception
// ----------------------------------------------------------
exception_handler_answer = 0xFFFFFFFF;
neorv32_uart_printf("FENCE: ");
cnt_test++;
asm volatile ("fence");
if (exception_handler_answer != 0xFFFFFFFF) {
test_fail();
}
else {
test_ok();
}
// ----------------------------------------------------------
// Test fencei instructions - make sure CPU does not crash here and throws no exception
// a more complex test is provided by the RISC-V compliance test
// ----------------------------------------------------------
exception_handler_answer = 0xFFFFFFFF;
neorv32_uart_printf("FENCE.I: ");
asm volatile ("fence.i");
if (exception_handler_answer == TRAP_CODE_I_ILLEGAL) {
neorv32_uart_printf("skipped (not implemented)\n");
}
else {
cnt_test++;
exception_handler_answer = 0xFFFFFFFF;
asm volatile ("fence.i");
if (exception_handler_answer == 0xFFFFFFFF) {
test_ok();
}
else {
test_fail();
}
}
// ----------------------------------------------------------
// Illegal CSR access
// ----------------------------------------------------------
exception_handler_answer = 0xFFFFFFFF;
neorv32_uart_printf("ILLEGAL CSR: ");
cnt_test++;
neorv32_cpu_csr_read(0xfff); // CSR 0xfff not implemented
#if (DETAILED_EXCEPTION_DEBUG==0)
if (exception_handler_answer == TRAP_CODE_I_ILLEGAL) {
test_ok();
}
else {
test_fail();
}
#endif
// ----------------------------------------------------------
// Unaligned instruction address
// ----------------------------------------------------------
exception_handler_answer = 0xFFFFFFFF;
neorv32_uart_printf("EXC I_ALIGN: ");
// skip if C-mode is implemented
if ((neorv32_cpu_csr_read(CSR_MISA) & (1<<CPU_MISA_C_EXT)) == 0) {
cnt_test++;
// call unaligned address
((void (*)(void))ADDR_UNALIGNED)();
#if (DETAILED_EXCEPTION_DEBUG==0)
if (exception_handler_answer == TRAP_CODE_I_MISALIGNED) {
neorv32_uart_printf("ok\n");
cnt_ok++;
}
else {
neorv32_uart_printf("fail\n");
cnt_fail++;
}
#endif
}
else {
neorv32_uart_printf("skipped (not possible when C-EXT enabled)\n");
}
// ----------------------------------------------------------
// Instruction access fault
// ----------------------------------------------------------
exception_handler_answer = 0xFFFFFFFF;
neorv32_uart_printf("EXC I_ACC: ");
cnt_test++;
// call unreachable aligned address
((void (*)(void))ADDR_UNREACHABLE)();
#if (DETAILED_EXCEPTION_DEBUG==0)
if (exception_handler_answer == TRAP_CODE_I_ACCESS) {
test_ok();
}
else {
test_fail();
}
#endif
// ----------------------------------------------------------
// Illegal instruction
// ----------------------------------------------------------
exception_handler_answer = 0xFFFFFFFF;
neorv32_uart_printf("EXC I_ILLEG: ");
cnt_test++;
// create test program in RAM
static const uint32_t dummy_sub_program[2] __attribute__((aligned(8))) = {
0xDEAD007F, // undefined 32-bit instruction (invalid opcode) -> illegal instruction exception
0x00008067 // ret (32-bit)
};
tmp_a = (uint32_t)&dummy_sub_program; // call the dummy sub program
asm volatile ("jalr ra, %[input_i]" : : [input_i] "r" (tmp_a));
#if (DETAILED_EXCEPTION_DEBUG==0)
if (exception_handler_answer == TRAP_CODE_I_ILLEGAL) {
test_ok();
}
else {
test_fail();
}
#endif
// ----------------------------------------------------------
// Illegal compressed instruction
// ----------------------------------------------------------
exception_handler_answer = 0xFFFFFFFF;
neorv32_uart_printf("EXC CI_ILLEG: ");
// skip if C-mode is not implemented
if ((neorv32_cpu_csr_read(CSR_MISA) & (1<<CPU_MISA_C_EXT)) != 0) {
cnt_test++;
// create test program in RAM
static const uint32_t dummy_sub_program_ci[2] __attribute__((aligned(8))) = {
0x00000001, // 2nd: official_illegal_op | 1st: NOP -> illegal instruction exception
0x00008067 // ret (32-bit)
};
tmp_a = (uint32_t)&dummy_sub_program_ci; // call the dummy sub program
asm volatile ("jalr ra, %[input_i]" : : [input_i] "r" (tmp_a));
#if (DETAILED_EXCEPTION_DEBUG==0)
if (exception_handler_answer == TRAP_CODE_I_ILLEGAL) {
test_ok();
}
else {
test_fail();
}
#endif
}
else {
neorv32_uart_printf("skipped (not possible when C-EXT disabled)\n");
}
// ----------------------------------------------------------
// Breakpoint instruction
// ----------------------------------------------------------
exception_handler_answer = 0xFFFFFFFF;
neorv32_uart_printf("EXC BREAK: ");
cnt_test++;
asm volatile("EBREAK");
#if (DETAILED_EXCEPTION_DEBUG==0)
if (exception_handler_answer == TRAP_CODE_BREAKPOINT) {
test_ok();
}
else {
test_fail();
}
#endif
// ----------------------------------------------------------
// Unaligned load address
// ----------------------------------------------------------
exception_handler_answer = 0xFFFFFFFF;
neorv32_uart_printf("EXC L_ALIGN: ");
cnt_test++;
// load from unaligned address
asm volatile ("lw zero, %[input_i](zero)" : : [input_i] "i" (ADDR_UNALIGNED));
#if (DETAILED_EXCEPTION_DEBUG==0)
if (exception_handler_answer == TRAP_CODE_L_MISALIGNED) {
test_ok();
}
else {
test_fail();
}
#endif
// ----------------------------------------------------------
// Load access fault
// ----------------------------------------------------------
exception_handler_answer = 0xFFFFFFFF;
neorv32_uart_printf("EXC L_ACC: ");
cnt_test++;
// load from unreachable aligned address
dummy_dst = MMR_UNREACHABLE;
#if (DETAILED_EXCEPTION_DEBUG==0)
if (exception_handler_answer == TRAP_CODE_L_ACCESS) {
test_ok();
}
else {
test_fail();
}
#endif
// ----------------------------------------------------------
// Unaligned store address
// ----------------------------------------------------------
exception_handler_answer = 0xFFFFFFFF;
neorv32_uart_printf("EXC S_ALIGN: ");
cnt_test++;
// store to unaligned address
asm volatile ("sw zero, %[input_i](zero)" : : [input_i] "i" (ADDR_UNALIGNED));
#if (DETAILED_EXCEPTION_DEBUG==0)
if (exception_handler_answer == TRAP_CODE_S_MISALIGNED) {
test_ok();
}
else {
test_fail();
}
#endif
// ----------------------------------------------------------
// Store access fault
// ----------------------------------------------------------
exception_handler_answer = 0xFFFFFFFF;
neorv32_uart_printf("EXC S_ACC: ");
cnt_test++;
// store to unreachable aligned address
MMR_UNREACHABLE = 0;
#if (DETAILED_EXCEPTION_DEBUG==0)
if (exception_handler_answer == TRAP_CODE_S_ACCESS) {
test_ok();
}
else {
test_fail();
}
#endif
// ----------------------------------------------------------
// Environment call
// ----------------------------------------------------------
exception_handler_answer = 0xFFFFFFFF;
neorv32_uart_printf("EXC ENVCALL: ");
cnt_test++;
asm volatile("ECALL");
#if (DETAILED_EXCEPTION_DEBUG==0)
if (exception_handler_answer == TRAP_CODE_MENV_CALL) {
test_ok();
}
else {
test_fail();
}
#endif
// ----------------------------------------------------------
// Machine timer interrupt (MTIME)
// ----------------------------------------------------------
exception_handler_answer = 0xFFFFFFFF;
neorv32_uart_printf("IRQ MTI: ");
if (neorv32_mtime_available()) {
cnt_test++;
// force MTIME IRQ
neorv32_mtime_set_timecmp(0);
// wait some time for the IRQ to arrive the CPU
asm volatile("nop");
asm volatile("nop");
asm volatile("nop");
asm volatile("nop");
#if (DETAILED_EXCEPTION_DEBUG==0)
if (exception_handler_answer == TRAP_CODE_MTI) {
test_ok();
}
else {
test_fail();
}
#endif
// no more mtime interrupts
neorv32_mtime_set_timecmp(-1);
}
else {
neorv32_uart_printf("skipped (WDT not implemented)\n");
}
// ----------------------------------------------------------
// Fast interrupt
// ----------------------------------------------------------
exception_handler_answer = 0xFFFFFFFF;
neorv32_uart_printf("FIRQ0 (WDT): ");
if (neorv32_wdt_available()) {
cnt_test++;
// configure WDT
neorv32_wdt_setup(CLK_PRSC_2, 0); // lowest clock prescaler, trigger IRQ on timeout
neorv32_wdt_reset(); // reset watchdog
neorv32_wdt_force(); // force watchdog into action
// wait some time for the IRQ to arrive the CPU
asm volatile("nop");
asm volatile("nop");
asm volatile("nop");
asm volatile("nop");
#if (DETAILED_EXCEPTION_DEBUG==0)
if (exception_handler_answer == TRAP_CODE_FIRQ_0) {
test_ok();
}
else {
test_fail();
}
#endif
// no more mtime interrupts
neorv32_wdt_disable();
}
else {
neorv32_uart_printf("skipped (WDT not implemented)\n");
}
// ----------------------------------------------------------
// Test WFI ("sleep") instructions, wakeup via MTIME
// ----------------------------------------------------------
exception_handler_answer = 0xFFFFFFFF;
neorv32_uart_printf("WFI (MTIME): ");
if (neorv32_mtime_available()) {
cnt_test++;
// program timer to wake up
neorv32_mtime_set_timecmp(neorv32_mtime_get_time() + 1000);
// put CPU into sleep mode
asm volatile ("wfi");
#if (DETAILED_EXCEPTION_DEBUG==0)
if (exception_handler_answer != TRAP_CODE_MTI) {
test_fail();
}
else {
test_ok();
}
#endif
// no more mtime interrupts
neorv32_mtime_set_timecmp(-1);
}
else {
neorv32_uart_printf("skipped (MTIME not implemented)\n");
}
// ----------------------------------------------------------
// Test invalid CSR access in user mode
// ----------------------------------------------------------
exception_handler_answer = 0xFFFFFFFF;
neorv32_uart_printf("USR INV_CSR: ");
// skip if U-mode is not implemented
if (neorv32_cpu_csr_read(CSR_MISA) & (1<<CPU_MISA_U_EXT)) {
cnt_test++;
// switch to user mode (hart will be back in MACHINE mode when trap handler returns)
neorv32_cpu_goto_user_mode();
{
// access to mstatus not allowed for user mode programs
neorv32_cpu_csr_read(CSR_MSTATUS);
}
#if (DETAILED_EXCEPTION_DEBUG==0)
if (exception_handler_answer == TRAP_CODE_I_ILLEGAL) {
test_ok();
}
else {
test_fail();
}
#endif
}
else {
neorv32_uart_printf("skipped (not possible when U-EXT disabled)\n");
}
// ----------------------------------------------------------
// Test RTE debug handler
// ----------------------------------------------------------
exception_handler_answer = 0xFFFFFFFF;
neorv32_uart_printf("RTE DB TEST: ");
cnt_test++;
// uninstall custom handler and use default RTE debug handler
neorv32_rte_exception_uninstall(RTE_TRAP_I_ILLEGAL);
// trigger illegal instruction exception
neorv32_cpu_csr_read(0xfff); // CSR not available
neorv32_uart_printf(" ");
if (exception_handler_answer == 0xFFFFFFFF) {
test_ok();
}
else {
test_fail();
neorv32_uart_printf("answer: 0x%x", exception_handler_answer);
}
// restore original handler
neorv32_rte_exception_install(RTE_TRAP_I_ILLEGAL, global_trap_handler);
// ----------------------------------------------------------
// Test physical memory protection
// ----------------------------------------------------------
exception_handler_answer = 0xFFFFFFFF;
neorv32_uart_printf("\nPhysical memory protection: ");
// check if PMP is implemented
neorv32_cpu_csr_read(0x3a0);
if (exception_handler_answer == TRAP_CODE_I_ILLEGAL) {
neorv32_uart_printf("test skipped (PMP not implemented)\n");
}
else {
neorv32_uart_printf("implemented\n");
// find out number of regions
for (i=0; i<16; i++) {
exception_handler_answer = 0xFFFFFFFF;
switch (i) { // try to access pmpaddr regs
case 0: neorv32_cpu_csr_read(CSR_PMPADDR0); break;
case 1: neorv32_cpu_csr_read(CSR_PMPADDR1); break;
case 2: neorv32_cpu_csr_read(CSR_PMPADDR2); break;
case 3: neorv32_cpu_csr_read(CSR_PMPADDR3); break;
case 4: neorv32_cpu_csr_read(CSR_PMPADDR4); break;
case 5: neorv32_cpu_csr_read(CSR_PMPADDR5); break;
case 6: neorv32_cpu_csr_read(CSR_PMPADDR6); break;
case 7: neorv32_cpu_csr_read(CSR_PMPADDR7); break;
default: break;
}
if (exception_handler_answer == TRAP_CODE_I_ILLEGAL) {
break;
}
}
neorv32_uart_printf("Regions: %u\n", i);
// check granulartiy
neorv32_cpu_csr_write(0x3a0, 0);
neorv32_cpu_csr_write(0x3b0, 0xffffffff);
uint32_t pmp_test_g = neorv32_cpu_csr_read(0x3b0);
// find least-significat set bit
for (i=31; i!=0; i--) {
if (((pmp_test_g >> i) & 1) == 0) {
break;
}
}
neorv32_uart_printf("Min granularity: ");
if (i < 29) {
neorv32_uart_printf("%u bytes per region (0x%x)\n", (uint32_t)(1 << (i+1+2)), pmp_test_g);
}
else {
neorv32_uart_printf("2^%u bytes per region\n", i+1+2);
}
// test available modes
neorv32_uart_printf("Mode TOR: ");
neorv32_cpu_csr_write(CSR_PMPCFG0, 0x08);
if ((neorv32_cpu_csr_read(CSR_PMPCFG0) & 0xFF) == 0x08) {
neorv32_uart_printf("available\n");
}
else {
neorv32_uart_printf("not implemented\n");
}
neorv32_uart_printf("Mode NA4: ");
neorv32_cpu_csr_write(CSR_PMPCFG0, 0x10);
if ((neorv32_cpu_csr_read(CSR_PMPCFG0) & 0xFF) == 0x10) {
neorv32_uart_printf("available\n");
}
else {
neorv32_uart_printf("not implemented\n");
}
neorv32_uart_printf("Mode NAPOT: ");
neorv32_cpu_csr_write(CSR_PMPCFG0, 0x18);
if ((neorv32_cpu_csr_read(CSR_PMPCFG0) & 0xFF) == 0x18) {
neorv32_uart_printf("available\n");
}
else {
neorv32_uart_printf("not implemented\n");
}
// Test access to protected region
// ---------------------------------------------
neorv32_uart_printf("Creating protected page (NAPOT, 64k) @ 0xFFFFA000, (!x, !w, r)...\n");
neorv32_cpu_csr_write(CSR_PMPADDR0, 0xffffdfff); // 64k area @ 0xFFFFA000
neorv32_cpu_csr_write(CSR_PMPCFG0, 0b00011001); // NAPOT, read permission, NO write and execute permissions
// ------ LOAD: should work ------
neorv32_uart_printf("U-mode (!X,!W,R) load test: ");
cnt_test++;
exception_handler_answer = 0xFFFFFFFF;
// switch to user mode (hart will be back in MACHINE mode when trap handler returns)
neorv32_cpu_goto_user_mode();
{
asm volatile ("lw zero, 0xFFFFFF90(zero)"); // MTIME load access, should work
}
#if (DETAILED_EXCEPTION_DEBUG==0)
if (exception_handler_answer == 0xFFFFFFFF) {
// switch back to machine mode (if not allready)
asm volatile ("ecall");
test_ok();
}
else {
// switch back to machine mode (if not allready)
asm volatile ("ecall");
test_fail();
}
#endif
// ------ STORE: should fail ------
neorv32_uart_printf("U-mode (!X,!W,R) store test: ");
cnt_test++;
exception_handler_answer = 0xFFFFFFFF;
// switch to user mode (hart will be back in MACHINE mode when trap handler returns)
neorv32_cpu_goto_user_mode();
{
asm volatile ("sw zero, 0xFFFFFF90(zero)"); // MTIME store access, should fail
}
#if (DETAILED_EXCEPTION_DEBUG==0)
if (exception_handler_answer == TRAP_CODE_S_ACCESS) {
// switch back to machine mode (if not allready)
asm volatile ("ecall");
test_ok();
}
else {
// switch back to machine mode (if not allready)
asm volatile ("ecall");
test_fail();
}
#endif
}
// ----------------------------------------------------------
// Final test reports
// ----------------------------------------------------------
union {
uint64_t uint64;
uint32_t uint32[sizeof(uint64_t)/2];
} exe_instr, exe_cycles;
exe_cycles.uint64 = neorv32_cpu_get_cycle();
exe_instr.uint64 = neorv32_cpu_get_instret();
neorv32_uart_printf("\n\nExecuted instructions: 0x%x_%x\n", exe_instr.uint32[1], exe_instr.uint32[0]);
neorv32_uart_printf( "Clock cycles: 0x%x_%x\n", exe_cycles.uint32[1], exe_cycles.uint32[0]);
neorv32_uart_printf("\nTests: %i\nOK: %i\nFAIL: %i\n\n", cnt_test, cnt_ok, cnt_fail);
// final result
if (cnt_fail == 0) {
neorv32_uart_printf("TEST OK!\n");
}
else {
neorv32_uart_printf("TEST FAILED!\n");
}
return 0;
}
/**********************************************************************//**
* Trap handler for ALL exceptions/interrupts.
**************************************************************************/
void global_trap_handler(void) {
exception_handler_answer = neorv32_cpu_csr_read(CSR_MCAUSE);
// hack: always come back in MACHINE MODE
register uint32_t mask = (1<<CPU_MSTATUS_MPP_H) | (1<<CPU_MSTATUS_MPP_L);
asm volatile ("csrrs zero, mstatus, %[input_j]" : : [input_j] "r" (mask));
}
/**********************************************************************//**
* Test results helper function: Shows "ok" and increments global cnt_ok
**************************************************************************/
void test_ok(void) {
neorv32_uart_printf("ok\n");
cnt_ok++;
}
/**********************************************************************//**
* Test results helper function: Shows "fail" and increments global cnt_fail
**************************************************************************/
void test_fail(void) {
neorv32_uart_printf("fail\n");
cnt_fail++;
}