mirror of
https://github.com/stnolting/neorv32.git
synced 2025-04-24 22:27:21 -04:00
604 lines
24 KiB
C
604 lines
24 KiB
C
// #################################################################################################
|
|
// # << NEORV32 - RISC-V Single-Precision Floating-Point 'Zfinx' Extension Verification Program >> #
|
|
// # ********************************************************************************************* #
|
|
// # BSD 3-Clause License #
|
|
// # #
|
|
// # Copyright (c) 2021, Stephan Nolting. All rights reserved. #
|
|
// # #
|
|
// # Redistribution and use in source and binary forms, with or without modification, are #
|
|
// # permitted provided that the following conditions are met: #
|
|
// # #
|
|
// # 1. Redistributions of source code must retain the above copyright notice, this list of #
|
|
// # conditions and the following disclaimer. #
|
|
// # #
|
|
// # 2. Redistributions in binary form must reproduce the above copyright notice, this list of #
|
|
// # conditions and the following disclaimer in the documentation and/or other materials #
|
|
// # provided with the distribution. #
|
|
// # #
|
|
// # 3. Neither the name of the copyright holder nor the names of its contributors may be used to #
|
|
// # endorse or promote products derived from this software without specific prior written #
|
|
// # permission. #
|
|
// # #
|
|
// # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS #
|
|
// # OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF #
|
|
// # MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE #
|
|
// # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, #
|
|
// # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE #
|
|
// # GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED #
|
|
// # AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING #
|
|
// # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED #
|
|
// # OF THE POSSIBILITY OF SUCH DAMAGE. #
|
|
// # ********************************************************************************************* #
|
|
// # The NEORV32 Processor - https://github.com/stnolting/neorv32 (c) Stephan Nolting #
|
|
// #################################################################################################
|
|
|
|
|
|
/**********************************************************************//**
|
|
* @file floating_point_test/main.c
|
|
* @author Stephan Nolting
|
|
* @brief Verification program for the NEORV32 'Zfinx' extension (floating-point in x registers) using pseudo-random data as input; compares results from hardware against pure-sw reference functions.
|
|
**************************************************************************/
|
|
|
|
#include <neorv32.h>
|
|
#include <float.h>
|
|
#include <math.h>
|
|
#include "neorv32_zfinx_extension_intrinsics.h"
|
|
|
|
#ifdef NAN
|
|
/* NAN is supported */
|
|
#else
|
|
#warning NAN macro not supported!
|
|
#endif
|
|
#ifdef INFINITY
|
|
/* INFINITY is supported */
|
|
#else
|
|
#warning INFINITY macro not supported!
|
|
#endif
|
|
|
|
|
|
/**********************************************************************//**
|
|
* @name User configuration
|
|
**************************************************************************/
|
|
/**@{*/
|
|
/** UART BAUD rate */
|
|
#define BAUD_RATE (19200)
|
|
//** Number of test cases for each instruction */
|
|
#define NUM_TEST_CASES (1000000)
|
|
//** Silent mode (only show actual errors when != 0) */
|
|
#define SILENT_MODE (1)
|
|
//** Run conversion tests when != 0 */
|
|
#define RUN_CONV_TESTS (1)
|
|
//** Run add/sub tests when != 0 */
|
|
#define RUN_ADDSUB_TESTS (1)
|
|
//** Run multiplication tests when != 0 */
|
|
#define RUN_MUL_TESTS (1)
|
|
//** Run min/max tests when != 0 */
|
|
#define RUN_MINMAX_TESTS (1)
|
|
//** Run comparison tests when != 0 */
|
|
#define RUN_COMPARE_TESTS (1)
|
|
//** Run sign-injection tests when != 0 */
|
|
#define RUN_SGNINJ_TESTS (1)
|
|
//** Run classify tests when != 0 */
|
|
#define RUN_CLASSIFY_TESTS (1)
|
|
//** Run unsupported instructions tests when != 0 */
|
|
#define RUN_UNAVAIL_TESTS (1)
|
|
/**@}*/
|
|
|
|
|
|
// Prototypes
|
|
uint32_t get_test_vector(void);
|
|
uint32_t xorshift32(void);
|
|
uint32_t verify_result(uint32_t num, uint32_t opa, uint32_t opb, uint32_t ref, uint32_t res);
|
|
void print_report(uint32_t num_err);
|
|
|
|
|
|
/**********************************************************************//**
|
|
* Main function; test all available operations of the NEORV32 'Zfinx' extensions using bit floating-point hardware intrinsics and software-only reference functions (emulation).
|
|
*
|
|
* @note This program requires the Zfinx CPU extension.
|
|
*
|
|
* @return Irrelevant.
|
|
**************************************************************************/
|
|
int main() {
|
|
|
|
uint32_t err_cnt = 0;
|
|
uint32_t err_cnt_total = 0;
|
|
uint32_t test_cnt = 0;
|
|
uint32_t i = 0;
|
|
float_conv_t opa;
|
|
float_conv_t opb;
|
|
float_conv_t res_hw;
|
|
float_conv_t res_sw;
|
|
|
|
|
|
// init primary UART
|
|
neorv32_uart_setup(BAUD_RATE, PARITY_NONE, FLOW_CONTROL_NONE);
|
|
|
|
// capture all exceptions and give debug info via UART
|
|
neorv32_rte_setup();
|
|
|
|
// check available hardware extensions and compare with compiler flags
|
|
neorv32_rte_check_isa(0); // silent = 0 -> show message if isa mismatch
|
|
|
|
// check if Zfinx extension is implemented at all
|
|
if (neorv32_check_zextension(CSR_MZEXT_ZFINX) == 0) {
|
|
neorv32_uart_print("Error! <Zfinx> extension not synthesized!\n");
|
|
return 0;
|
|
}
|
|
|
|
|
|
// Disable compilation by default
|
|
#ifndef RUN_TEST
|
|
#warning Program HAS NOT BEEN COMPILED! Use >>make USER_FLAGS+=-DRUN_TEST clean_all exe<< to compile it.
|
|
|
|
// inform the user if you are actually executing this
|
|
neorv32_uart_printf("ERROR! Program has not been compiled. Use >>make USER_FLAGS+=-DRUN_TEST clean_all exe<< to compile it.\n");
|
|
|
|
return 0;
|
|
#endif
|
|
|
|
|
|
// intro
|
|
neorv32_uart_printf("<<< Zfinx extension test >>>\n");
|
|
#if (SILENT_MODE != 0)
|
|
neorv32_uart_printf("SILENT_MODE enabled (only showing actual errors)\n");
|
|
#endif
|
|
neorv32_uart_printf("Test cases per instruction: %u\n\n", (uint32_t)NUM_TEST_CASES);
|
|
|
|
|
|
// clear exception status word
|
|
neorv32_cpu_csr_write(CSR_FFLAGS, 0);; // real hardware
|
|
feclearexcept(FE_ALL_EXCEPT); // software runtime (GCC floating-point emulation)
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Conversion Tests
|
|
// ----------------------------------------------------------------------------
|
|
|
|
#if (RUN_CONV_TESTS != 0)
|
|
neorv32_uart_printf("\n#%u: FCVT.S.WU (unsigned integer to float)...\n", test_cnt);
|
|
err_cnt = 0;
|
|
for (i=0;i<(uint32_t)NUM_TEST_CASES; i++) {
|
|
opa.binary_value = get_test_vector();
|
|
res_hw.float_value = riscv_intrinsic_fcvt_swu(opa.binary_value);
|
|
res_sw.float_value = riscv_emulate_fcvt_swu(opa.binary_value);
|
|
err_cnt += verify_result(i, opa.binary_value, 0, res_sw.binary_value, res_hw.binary_value);
|
|
}
|
|
print_report(err_cnt);
|
|
err_cnt_total += err_cnt;
|
|
test_cnt++;
|
|
|
|
neorv32_uart_printf("\n#%u: FCVT.S.W (signed integer to float)...\n", test_cnt);
|
|
err_cnt = 0;
|
|
for (i=0;i<(uint32_t)NUM_TEST_CASES; i++) {
|
|
opa.binary_value = get_test_vector();
|
|
res_hw.float_value = riscv_intrinsic_fcvt_sw((int32_t)opa.binary_value);
|
|
res_sw.float_value = riscv_emulate_fcvt_sw((int32_t)opa.binary_value);
|
|
err_cnt += verify_result(i, opa.binary_value, 0, res_sw.binary_value, res_hw.binary_value);
|
|
}
|
|
print_report(err_cnt);
|
|
err_cnt_total += err_cnt;
|
|
test_cnt++;
|
|
|
|
neorv32_uart_printf("\n#%u: FCVT.WU.S (float to unsigned integer)...\n", test_cnt);
|
|
err_cnt = 0;
|
|
for (i=0;i<(uint32_t)NUM_TEST_CASES; i++) {
|
|
opa.binary_value = get_test_vector();
|
|
res_hw.binary_value = riscv_intrinsic_fcvt_wus(opa.float_value);
|
|
res_sw.binary_value = riscv_emulate_fcvt_wus(opa.float_value);
|
|
err_cnt += verify_result(i, opa.binary_value, 0, res_sw.binary_value, res_hw.binary_value);
|
|
}
|
|
print_report(err_cnt);
|
|
err_cnt_total += err_cnt;
|
|
test_cnt++;
|
|
|
|
neorv32_uart_printf("\n#%u: FCVT.W.S (float to signed integer)...\n", test_cnt);
|
|
err_cnt = 0;
|
|
for (i=0;i<(uint32_t)NUM_TEST_CASES; i++) {
|
|
opa.binary_value = get_test_vector();
|
|
res_hw.binary_value = (uint32_t)riscv_intrinsic_fcvt_ws(opa.float_value);
|
|
res_sw.binary_value = (uint32_t)riscv_emulate_fcvt_ws(opa.float_value);
|
|
err_cnt += verify_result(i, opa.binary_value, 0, res_sw.binary_value, res_hw.binary_value);
|
|
}
|
|
print_report(err_cnt);
|
|
err_cnt_total += err_cnt;
|
|
test_cnt++;
|
|
#endif
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Add/Sub Tests
|
|
// ----------------------------------------------------------------------------
|
|
|
|
#if (RUN_ADDSUB_TESTS != 0)
|
|
neorv32_uart_printf("\n#%u: FADD.S (addition)...\n", test_cnt);
|
|
err_cnt = 0;
|
|
for (i=0;i<(uint32_t)NUM_TEST_CASES; i++) {
|
|
opa.binary_value = get_test_vector();
|
|
opb.binary_value = get_test_vector();
|
|
res_hw.float_value = riscv_intrinsic_fadds(opa.float_value, opb.float_value);
|
|
res_sw.float_value = riscv_emulate_fadds(opa.float_value, opb.float_value);
|
|
err_cnt += verify_result(i, opa.binary_value, opb.binary_value, res_sw.binary_value, res_hw.binary_value);
|
|
}
|
|
print_report(err_cnt);
|
|
err_cnt_total += err_cnt;
|
|
test_cnt++;
|
|
|
|
neorv32_uart_printf("\n#%u: FSUB.S (subtraction)...\n", test_cnt);
|
|
err_cnt = 0;
|
|
for (i=0;i<(uint32_t)NUM_TEST_CASES; i++) {
|
|
opa.binary_value = get_test_vector();
|
|
opb.binary_value = get_test_vector();
|
|
res_hw.float_value = riscv_intrinsic_fsubs(opa.float_value, opb.float_value);
|
|
res_sw.float_value = riscv_emulate_fsubs(opa.float_value, opb.float_value);
|
|
err_cnt += verify_result(i, opa.binary_value, opb.binary_value, res_sw.binary_value, res_hw.binary_value);
|
|
}
|
|
print_report(err_cnt);
|
|
err_cnt_total += err_cnt;
|
|
test_cnt++;
|
|
#endif
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Multiplication Tests
|
|
// ----------------------------------------------------------------------------
|
|
|
|
#if (RUN_MUL_TESTS != 0)
|
|
neorv32_uart_printf("\n#%u: FMUL.S (multiplication)...\n", test_cnt);
|
|
err_cnt = 0;
|
|
for (i=0;i<(uint32_t)NUM_TEST_CASES; i++) {
|
|
opa.binary_value = get_test_vector();
|
|
opb.binary_value = get_test_vector();
|
|
res_hw.float_value = riscv_intrinsic_fmuls(opa.float_value, opb.float_value);
|
|
res_sw.float_value = riscv_emulate_fmuls(opa.float_value, opb.float_value);
|
|
err_cnt += verify_result(i, opa.binary_value, opb.binary_value, res_sw.binary_value, res_hw.binary_value);
|
|
}
|
|
print_report(err_cnt);
|
|
err_cnt_total += err_cnt;
|
|
test_cnt++;
|
|
#endif
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Min/Max Tests
|
|
// ----------------------------------------------------------------------------
|
|
|
|
#if (RUN_MINMAX_TESTS != 0)
|
|
neorv32_uart_printf("\n#%u: FMIN.S (select minimum)...\n", test_cnt);
|
|
err_cnt = 0;
|
|
for (i=0;i<(uint32_t)NUM_TEST_CASES; i++) {
|
|
opa.binary_value = get_test_vector();
|
|
opb.binary_value = get_test_vector();
|
|
res_hw.float_value = riscv_intrinsic_fmins(opa.float_value, opb.float_value);
|
|
res_sw.float_value = riscv_emulate_fmins(opa.float_value, opb.float_value);
|
|
err_cnt += verify_result(i, opa.binary_value, opb.binary_value, res_sw.binary_value, res_hw.binary_value);
|
|
}
|
|
print_report(err_cnt);
|
|
err_cnt_total += err_cnt;
|
|
test_cnt++;
|
|
|
|
neorv32_uart_printf("\n#%u: FMAX.S (select maximum)...\n", test_cnt);
|
|
err_cnt = 0;
|
|
for (i=0;i<(uint32_t)NUM_TEST_CASES; i++) {
|
|
opa.binary_value = get_test_vector();
|
|
opb.binary_value = get_test_vector();
|
|
res_hw.float_value = riscv_intrinsic_fmaxs(opa.float_value, opb.float_value);
|
|
res_sw.float_value = riscv_emulate_fmaxs(opa.float_value, opb.float_value);
|
|
err_cnt += verify_result(i, opa.binary_value, opb.binary_value, res_sw.binary_value, res_hw.binary_value);
|
|
}
|
|
print_report(err_cnt);
|
|
err_cnt_total += err_cnt;
|
|
test_cnt++;
|
|
#endif
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Comparison Tests
|
|
// ----------------------------------------------------------------------------
|
|
|
|
#if (RUN_COMPARE_TESTS != 0)
|
|
neorv32_uart_printf("\n#%u: FEQ.S (compare if equal)...\n", test_cnt);
|
|
err_cnt = 0;
|
|
for (i=0;i<(uint32_t)NUM_TEST_CASES; i++) {
|
|
opa.binary_value = get_test_vector();
|
|
opb.binary_value = get_test_vector();
|
|
res_hw.binary_value = riscv_intrinsic_feqs(opa.float_value, opb.float_value);
|
|
res_sw.binary_value = riscv_emulate_feqs(opa.float_value, opb.float_value);
|
|
err_cnt += verify_result(i, opa.binary_value, opb.binary_value, res_sw.binary_value, res_hw.binary_value);
|
|
}
|
|
print_report(err_cnt);
|
|
err_cnt_total += err_cnt;
|
|
test_cnt++;
|
|
|
|
neorv32_uart_printf("\n#%u: FLT.S (compare if less-than)...\n", test_cnt);
|
|
err_cnt = 0;
|
|
for (i=0;i<(uint32_t)NUM_TEST_CASES; i++) {
|
|
opa.binary_value = get_test_vector();
|
|
opb.binary_value = get_test_vector();
|
|
res_hw.binary_value = riscv_intrinsic_flts(opa.float_value, opb.float_value);
|
|
res_sw.binary_value = riscv_emulate_flts(opa.float_value, opb.float_value);
|
|
err_cnt += verify_result(i, opa.binary_value, opb.binary_value, res_sw.binary_value, res_hw.binary_value);
|
|
}
|
|
print_report(err_cnt);
|
|
err_cnt_total += err_cnt;
|
|
test_cnt++;
|
|
|
|
neorv32_uart_printf("\n#%u: FLE.S (compare if less-than-or-equal)...\n", test_cnt);
|
|
err_cnt = 0;
|
|
for (i=0;i<(uint32_t)NUM_TEST_CASES; i++) {
|
|
opa.binary_value = get_test_vector();
|
|
opb.binary_value = get_test_vector();
|
|
res_hw.binary_value = riscv_intrinsic_fles(opa.float_value, opb.float_value);
|
|
res_sw.binary_value = riscv_emulate_fles(opa.float_value, opb.float_value);
|
|
err_cnt += verify_result(i, opa.binary_value, opb.binary_value, res_sw.binary_value, res_hw.binary_value);
|
|
}
|
|
print_report(err_cnt);
|
|
err_cnt_total += err_cnt;
|
|
test_cnt++;
|
|
#endif
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Sign-Injection Tests
|
|
// ----------------------------------------------------------------------------
|
|
|
|
#if (RUN_SGNINJ_TESTS != 0)
|
|
neorv32_uart_printf("\n#%u: FSGNJ.S (sign-injection)...\n", test_cnt);
|
|
err_cnt = 0;
|
|
for (i=0;i<(uint32_t)NUM_TEST_CASES; i++) {
|
|
opa.binary_value = get_test_vector();
|
|
opb.binary_value = get_test_vector();
|
|
res_hw.float_value = riscv_intrinsic_fsgnjs(opa.float_value, opb.float_value);
|
|
res_sw.float_value = riscv_emulate_fsgnjs(opa.float_value, opb.float_value);
|
|
err_cnt += verify_result(i, opa.binary_value, opb.binary_value, res_sw.binary_value, res_hw.binary_value);
|
|
}
|
|
print_report(err_cnt);
|
|
err_cnt_total += err_cnt;
|
|
test_cnt++;
|
|
|
|
neorv32_uart_printf("\n#%u: FSGNJN.S (sign-injection NOT)...\n", test_cnt);
|
|
err_cnt = 0;
|
|
for (i=0;i<(uint32_t)NUM_TEST_CASES; i++) {
|
|
opa.binary_value = get_test_vector();
|
|
opb.binary_value = get_test_vector();
|
|
res_hw.float_value = riscv_intrinsic_fsgnjns(opa.float_value, opb.float_value);
|
|
res_sw.float_value = riscv_emulate_fsgnjns(opa.float_value, opb.float_value);
|
|
err_cnt += verify_result(i, opa.binary_value, opb.binary_value, res_sw.binary_value, res_hw.binary_value);
|
|
}
|
|
print_report(err_cnt);
|
|
err_cnt_total += err_cnt;
|
|
test_cnt++;
|
|
|
|
neorv32_uart_printf("\n#%u: FSGNJX.S (sign-injection XOR)...\n", test_cnt);
|
|
err_cnt = 0;
|
|
for (i=0;i<(uint32_t)NUM_TEST_CASES; i++) {
|
|
opa.binary_value = get_test_vector();
|
|
opb.binary_value = get_test_vector();
|
|
res_hw.float_value = riscv_intrinsic_fsgnjxs(opa.float_value, opb.float_value);
|
|
res_sw.float_value = riscv_emulate_fsgnjxs(opa.float_value, opb.float_value);
|
|
err_cnt += verify_result(i, opa.binary_value, opb.binary_value, res_sw.binary_value, res_hw.binary_value);
|
|
}
|
|
print_report(err_cnt);
|
|
err_cnt_total += err_cnt;
|
|
test_cnt++;
|
|
#endif
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Classify Tests
|
|
// ----------------------------------------------------------------------------
|
|
|
|
#if (RUN_CLASSIFY_TESTS != 0)
|
|
neorv32_uart_printf("\n#%u: FCLASS.S (classify)...\n", test_cnt);
|
|
err_cnt = 0;
|
|
for (i=0;i<(uint32_t)NUM_TEST_CASES; i++) {
|
|
opa.binary_value = get_test_vector();
|
|
res_hw.binary_value = riscv_intrinsic_fclasss(opa.float_value);
|
|
res_sw.binary_value = riscv_emulate_fclasss(opa.float_value);
|
|
err_cnt += verify_result(i, opa.binary_value, 0, res_sw.binary_value, res_hw.binary_value);
|
|
}
|
|
print_report(err_cnt);
|
|
err_cnt_total += err_cnt;
|
|
test_cnt++;
|
|
#endif
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// UNSUPPORTED Instructions Tests - Execution should raise illegal instruction exception
|
|
// ----------------------------------------------------------------------------
|
|
|
|
#if (RUN_UNAVAIL_TESTS != 0)
|
|
neorv32_uart_printf("\n# unsupported FDIV.S (division) [illegal instruction]...\n");
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
|
opa.binary_value = get_test_vector();
|
|
opb.binary_value = get_test_vector();
|
|
riscv_intrinsic_fdivs(opa.float_value, opb.float_value);
|
|
if (neorv32_cpu_csr_read(CSR_MCAUSE) == 0) {
|
|
neorv32_uart_printf("%c[1m[FAILED]%c[0m\n", 27, 27);
|
|
err_cnt_total++;
|
|
}
|
|
else {
|
|
neorv32_uart_printf("%c[1m[ok]%c[0m\n", 27, 27);
|
|
}
|
|
|
|
neorv32_uart_printf("\n# unsupported FSQRT.S (square root) [illegal instruction]...\n");
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
|
opa.binary_value = get_test_vector();
|
|
opb.binary_value = get_test_vector();
|
|
riscv_intrinsic_fsqrts(opa.float_value);
|
|
if (neorv32_cpu_csr_read(CSR_MCAUSE) == 0) {
|
|
neorv32_uart_printf("%c[1m[FAILED]%c[0m\n", 27, 27);
|
|
err_cnt_total++;
|
|
}
|
|
else {
|
|
neorv32_uart_printf("%c[1m[ok]%c[0m\n", 27, 27);
|
|
}
|
|
|
|
neorv32_uart_printf("\n# unsupported FMADD.S (fused multiply-add) [illegal instruction]...\n");
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
|
opa.binary_value = get_test_vector();
|
|
opb.binary_value = get_test_vector();
|
|
riscv_intrinsic_fmadds(opa.float_value, opb.float_value, -opa.float_value);
|
|
if (neorv32_cpu_csr_read(CSR_MCAUSE) == 0) {
|
|
neorv32_uart_printf("%c[1m[FAILED]%c[0m\n", 27, 27);
|
|
err_cnt_total++;
|
|
}
|
|
else {
|
|
neorv32_uart_printf("%c[1m[ok]%c[0m\n", 27, 27);
|
|
}
|
|
|
|
neorv32_uart_printf("\n# unsupported FMSUB.S (fused multiply-sub) [illegal instruction]...\n");
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
|
opa.binary_value = get_test_vector();
|
|
opb.binary_value = get_test_vector();
|
|
riscv_intrinsic_fmsubs(opa.float_value, opb.float_value, -opa.float_value);
|
|
if (neorv32_cpu_csr_read(CSR_MCAUSE) == 0) {
|
|
neorv32_uart_printf("%c[1m[FAILED]%c[0m\n", 27, 27);
|
|
err_cnt_total++;
|
|
}
|
|
else {
|
|
neorv32_uart_printf("%c[1m[ok]%c[0m\n", 27, 27);
|
|
}
|
|
|
|
neorv32_uart_printf("\n# unsupported FNMSUB.S (fused negated multiply-sub) [illegal instruction]...\n");
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
|
opa.binary_value = get_test_vector();
|
|
opb.binary_value = get_test_vector();
|
|
riscv_intrinsic_fnmadds(opa.float_value, opb.float_value, -opa.float_value);
|
|
if (neorv32_cpu_csr_read(CSR_MCAUSE) == 0) {
|
|
neorv32_uart_printf("%c[1m[FAILED]%c[0m\n", 27, 27);
|
|
err_cnt_total++;
|
|
}
|
|
else {
|
|
neorv32_uart_printf("%c[1m[ok]%c[0m\n", 27, 27);
|
|
}
|
|
|
|
neorv32_uart_printf("\n# unsupported FNMADD.S (fused negated multiply-add) [illegal instruction]...\n");
|
|
neorv32_cpu_csr_write(CSR_MCAUSE, 0);
|
|
opa.binary_value = get_test_vector();
|
|
opb.binary_value = get_test_vector();
|
|
riscv_intrinsic_fnmadds(opa.float_value, opb.float_value, -opa.float_value);
|
|
if (neorv32_cpu_csr_read(CSR_MCAUSE) == 0) {
|
|
neorv32_uart_printf("%c[1m[FAILED]%c[0m\n", 27, 27);
|
|
err_cnt_total++;
|
|
}
|
|
else {
|
|
neorv32_uart_printf("%c[1m[ok]%c[0m\n", 27, 27);
|
|
}
|
|
#endif
|
|
|
|
|
|
// final report
|
|
if (err_cnt_total != 0) {
|
|
neorv32_uart_printf("\n%c[1m[ZFINX EXTENSION VERIFICATION FAILED!]%c[0m\n", 27, 27);
|
|
neorv32_uart_printf("%u errors in %u test cases\n", err_cnt_total, test_cnt*(uint32_t)NUM_TEST_CASES);
|
|
}
|
|
else {
|
|
neorv32_uart_printf("\n%c[1m[Zfinx extension verification successful!]%c[0m\n", 27, 27);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**********************************************************************//**
|
|
* Generate 32-bit test data (including special values like INFINITY every now and then).
|
|
*
|
|
* @return Test data (32-bit).
|
|
**************************************************************************/
|
|
uint32_t get_test_vector(void) {
|
|
|
|
float_conv_t tmp;
|
|
|
|
// generate special value "every" ~256th time this function is called
|
|
if ((xorshift32() & 0xff) == 0xff) {
|
|
|
|
switch((xorshift32() >> 10) & 0x3) { // random decision which special value we are taking
|
|
case 0: tmp.float_value = +INFINITY; break;
|
|
case 1: tmp.float_value = -INFINITY; break;
|
|
case 2: tmp.float_value = +0.0f; break;
|
|
case 3: tmp.float_value = -0.0f; break;
|
|
case 4: tmp.binary_value = 0x7fffffff; break;
|
|
case 5: tmp.binary_value = 0xffffffff; break;
|
|
case 6: tmp.float_value = NAN; break;
|
|
case 7: tmp.float_value = NAN; break; // FIXME signaling_NAN?
|
|
default: tmp.float_value = NAN; break;
|
|
}
|
|
}
|
|
else {
|
|
tmp.binary_value = xorshift32();
|
|
}
|
|
|
|
// subnormal numbers are not supported yet!
|
|
// flush them to zero
|
|
//tmp.float_value = subnormal_flush(tmp.float_value);
|
|
|
|
return tmp.binary_value;
|
|
}
|
|
|
|
|
|
/**********************************************************************//**
|
|
* PSEUDO-RANDOM number generator.
|
|
*
|
|
* @return Random data (32-bit).
|
|
**************************************************************************/
|
|
uint32_t xorshift32(void) {
|
|
|
|
static uint32_t x32 = 314159265;
|
|
|
|
x32 ^= x32 << 13;
|
|
x32 ^= x32 >> 17;
|
|
x32 ^= x32 << 5;
|
|
|
|
return x32;
|
|
}
|
|
|
|
|
|
/**********************************************************************//**
|
|
* Verify results (software reference vs. actual hardware).
|
|
*
|
|
* @param[in] num Test case number
|
|
* @param[in] opa Operand 1
|
|
* @param[in] opb Operand 2
|
|
* @param[in] ref Software reference
|
|
* @param[in] res Actual results from hardware
|
|
* @return zero if results are equal.
|
|
**************************************************************************/
|
|
uint32_t verify_result(uint32_t num, uint32_t opa, uint32_t opb, uint32_t ref, uint32_t res) {
|
|
|
|
#if (SILENT_MODE == 0)
|
|
neorv32_uart_printf("%u: opa = 0x%x, opb = 0x%x : ref[SW] = 0x%x vs. res[HW] = 0x%x ", num, opa, opb, ref, res);
|
|
#endif
|
|
|
|
if (ref != res) {
|
|
#if (SILENT_MODE != 0)
|
|
neorv32_uart_printf("%u: opa = 0x%x, opb = 0x%x : ref[SW] = 0x%x vs. res[HW] = 0x%x ", num, opa, opb, ref, res);
|
|
#endif
|
|
neorv32_uart_printf("%c[1m[FAILED]%c[0m\n", 27, 27);
|
|
return 1;
|
|
}
|
|
else {
|
|
#if (SILENT_MODE == 0)
|
|
neorv32_uart_printf("%c[1m[ok]%c[0m\n", 27, 27);
|
|
#endif
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
/**********************************************************************//**
|
|
* Print test report.
|
|
*
|
|
* @param[in] num_err Number or errors in this test.
|
|
**************************************************************************/
|
|
void print_report(uint32_t num_err) {
|
|
|
|
neorv32_uart_printf("Errors: %u/%u ", num_err, (uint32_t)NUM_TEST_CASES);
|
|
|
|
if (num_err == 0) {
|
|
neorv32_uart_printf("%c[1m[ok]%c[0m\n", 27, 27);
|
|
}
|
|
else {
|
|
neorv32_uart_printf("%c[1m[FAILED]%c[0m\n", 27, 27);
|
|
}
|
|
}
|