neorv32/sw/example/bit_manipulation/main.c
2021-01-26 17:52:33 +01:00

361 lines
12 KiB
C

// #################################################################################################
// # << NEORV32 - RISC-V Bit Manipulation 'B.Zbb' Extension Test Program >> #
// # ********************************************************************************************* #
// # BSD 3-Clause License #
// # #
// # Copyright (c) 2021, Stephan Nolting. All rights reserved. #
// # #
// # Redistribution and use in source and binary forms, with or without modification, are #
// # permitted provided that the following conditions are met: #
// # #
// # 1. Redistributions of source code must retain the above copyright notice, this list of #
// # conditions and the following disclaimer. #
// # #
// # 2. Redistributions in binary form must reproduce the above copyright notice, this list of #
// # conditions and the following disclaimer in the documentation and/or other materials #
// # provided with the distribution. #
// # #
// # 3. Neither the name of the copyright holder nor the names of its contributors may be used to #
// # endorse or promote products derived from this software without specific prior written #
// # permission. #
// # #
// # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS #
// # OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF #
// # MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE #
// # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, #
// # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE #
// # GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED #
// # AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING #
// # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED #
// # OF THE POSSIBILITY OF SUCH DAMAGE. #
// # ********************************************************************************************* #
// # The NEORV32 Processor - https://github.com/stnolting/neorv32 (c) Stephan Nolting #
// #################################################################################################
/**********************************************************************//**
* @file bit_manipulation/main.c
* @author Stephan Nolting
* @brief Test program for the NEORV32 'B' extension (Zbb subset) using pseudo-random data as input; compares results from hardware against pure-sw reference functions.
**************************************************************************/
#include <neorv32.h>
#include "neorv32_b_extension_intrinsics.h"
/**********************************************************************//**
* @name User configuration
**************************************************************************/
/**@{*/
/** UART BAUD rate */
#define BAUD_RATE (19200)
//** Number of test cases for each instruction */
#define NUM_TEST_CASES (10000)
/**@}*/
// Prototypes
uint32_t xorshift32(void);
uint32_t check_result(uint32_t num, uint32_t opa, uint32_t opb, uint32_t ref, uint32_t res);
void print_report(int num_err, int num_tests);
/**********************************************************************//**
* Main function; test all available operations of the NEORV32 'B' extensions using bit manipulation intrinsics and software-only reference functions (emulation).
*
* @note This program requires the B CPU extension.
*
* @return Irrelevant.
**************************************************************************/
int main() {
uint32_t opa = 0, opb = 0, res_hw = 0, res_sw = 0;
uint32_t i = 0, err_cnt = 0;
const uint32_t num_tests = (int)NUM_TEST_CASES;
// capture all exceptions and give debug info via UART
neorv32_rte_setup();
// init UART at default baud rate, no parity bits, no rx interrupt, no tx interrupt
neorv32_uart_setup(BAUD_RATE, 0b00, 0, 0);
// intro
neorv32_uart_printf("NEORV32 Bit Manipulation (B.Zbb) Extension Test\n\n");
// check available hardware extensions and compare with compiler flags
neorv32_rte_check_isa(0); // silent = 0 -> show message if isa mismatch
neorv32_uart_printf("Starting bit manipulation extensions tests (%i test cases per instruction)...\n", num_tests);
// CLZ
neorv32_uart_printf("\nCLZ:\n");
err_cnt = 0;
for (i=0;i<num_tests; i++) {
opa = xorshift32();
res_sw = riscv_emulate_clz(opa);
res_hw = riscv_intrinsic_clz(opa);
err_cnt += check_result(i, opa, 0, res_sw, res_hw);
}
print_report(err_cnt, num_tests);
// CTZ
neorv32_uart_printf("\nCTZ:\n");
err_cnt = 0;
for (i=0;i<num_tests; i++) {
opa = xorshift32();
res_sw = riscv_emulate_ctz(opa);
res_hw = riscv_intrinsic_ctz(opa);
err_cnt += check_result(i, opa, 0, res_sw, res_hw);
}
print_report(err_cnt, num_tests);
// CPOP
neorv32_uart_printf("\nCPOP:\n");
err_cnt = 0;
for (i=0;i<num_tests; i++) {
opa = xorshift32();
res_sw = riscv_emulate_cpop(opa);
res_hw = riscv_intrinsic_cpop(opa);
err_cnt += check_result(i, opa, 0, res_sw, res_hw);
}
print_report(err_cnt, num_tests);
// SEXT.B
neorv32_uart_printf("\nSEXT.B:\n");
err_cnt = 0;
for (i=0;i<num_tests; i++) {
opa = xorshift32();
res_sw = riscv_emulate_sextb(opa);
res_hw = riscv_intrinsic_sextb(opa);
err_cnt += check_result(i, opa, 0, res_sw, res_hw);
}
print_report(err_cnt, num_tests);
// SEXT.H
neorv32_uart_printf("\nSEXT.H:\n");
err_cnt = 0;
for (i=0;i<num_tests; i++) {
opa = xorshift32();
res_sw = riscv_emulate_sexth(opa);
res_hw = riscv_intrinsic_sexth(opa);
err_cnt += check_result(i, opa, 0, res_sw, res_hw);
}
print_report(err_cnt, num_tests);
// MIN
neorv32_uart_printf("\nMIN:\n");
err_cnt = 0;
for (i=0;i<num_tests; i++) {
opa = xorshift32();
opb = xorshift32();
res_sw = riscv_emulate_min(opa, opb);
res_hw = riscv_intrinsic_min(opa, opb);
err_cnt += check_result(i, opa, opb, res_sw, res_hw);
}
print_report(err_cnt, num_tests);
// MINU
neorv32_uart_printf("\nMINU:\n");
err_cnt = 0;
for (i=0;i<num_tests; i++) {
opa = xorshift32();
opb = xorshift32();
res_sw = riscv_emulate_minu(opa, opb);
res_hw = riscv_intrinsic_minu(opa, opb);
err_cnt += check_result(i, opa, opb, res_sw, res_hw);
}
print_report(err_cnt, num_tests);
// MAX
neorv32_uart_printf("\nMAX:\n");
err_cnt = 0;
for (i=0;i<num_tests; i++) {
opa = xorshift32();
opb = xorshift32();
res_sw = riscv_emulate_max(opa, opb);
res_hw = riscv_intrinsic_max(opa, opb);
err_cnt += check_result(i, opa, opb, res_sw, res_hw);
}
print_report(err_cnt, num_tests);
// MAXU
neorv32_uart_printf("\nMAXU:\n");
err_cnt = 0;
for (i=0;i<num_tests; i++) {
opa = xorshift32();
opb = xorshift32();
res_sw = riscv_emulate_maxu(opa, opb);
res_hw = riscv_intrinsic_maxu(opa, opb);
err_cnt += check_result(i, opa, opb, res_sw, res_hw);
}
print_report(err_cnt, num_tests);
// PACK
neorv32_uart_printf("\nPACK:\n");
err_cnt = 0;
for (i=0;i<num_tests; i++) {
opa = xorshift32();
opb = xorshift32();
res_sw = riscv_emulate_pack(opa, opb);
res_hw = riscv_intrinsic_pack(opa, opb);
err_cnt += check_result(i, opa, opb, res_sw, res_hw);
}
print_report(err_cnt, num_tests);
// ANDN
neorv32_uart_printf("\nANDN:\n");
err_cnt = 0;
for (i=0;i<num_tests; i++) {
opa = xorshift32();
opb = xorshift32();
res_sw = riscv_emulate_andn(opa, opb);
res_hw = riscv_intrinsic_andn(opa, opb);
err_cnt += check_result(i, opa, opb, res_sw, res_hw);
}
print_report(err_cnt, num_tests);
// ORN
neorv32_uart_printf("\nORN:\n");
err_cnt = 0;
for (i=0;i<num_tests; i++) {
opa = xorshift32();
opb = xorshift32();
res_sw = riscv_emulate_orn(opa, opb);
res_hw = riscv_intrinsic_orn(opa, opb);
err_cnt += check_result(i, opa, opb, res_sw, res_hw);
}
print_report(err_cnt, num_tests);
// XNOR
neorv32_uart_printf("\nXNOR:\n");
err_cnt = 0;
for (i=0;i<num_tests; i++) {
opa = xorshift32();
opb = xorshift32();
res_sw = riscv_emulate_xnor(opa, opb);
res_hw = riscv_intrinsic_xnor(opa, opb);
err_cnt += check_result(i, opa, opb, res_sw, res_hw);
}
print_report(err_cnt, num_tests);
// ROL
neorv32_uart_printf("\nROL:\n");
err_cnt = 0;
for (i=0;i<num_tests; i++) {
opa = xorshift32();
opb = xorshift32();
res_sw = riscv_emulate_rol(opa, opb);
res_hw = riscv_intrinsic_rol(opa, opb);
err_cnt += check_result(i, opa, opb, res_sw, res_hw);
}
print_report(err_cnt, num_tests);
// ROR
neorv32_uart_printf("\nROR:\n");
err_cnt = 0;
for (i=0;i<num_tests; i++) {
opa = xorshift32();
opb = xorshift32();
res_sw = riscv_emulate_ror(opa, opb);
res_hw = riscv_intrinsic_ror(opa, opb);
err_cnt += check_result(i, opa, opb, res_sw, res_hw);
}
print_report(err_cnt, num_tests);
// RORI
neorv32_uart_printf("\nRORI (imm=20):\n"); // FIXME: static immediate
err_cnt = 0;
for (i=0;i<num_tests; i++) {
opa = xorshift32();
res_sw = riscv_emulate_ror(opa, 20);
res_hw = riscv_intrinsic_rori20(opa);
err_cnt += check_result(i, opa, opb, res_sw, res_hw);
}
print_report(err_cnt, num_tests);
// ORC.B
neorv32_uart_printf("\nORC.B:\n");
err_cnt = 0;
for (i=0;i<num_tests; i++) {
opa = xorshift32();
res_sw = riscv_emulate_orcb(opa);
res_hw = riscv_intrinsic_orcb(opa);
err_cnt += check_result(i, opa, 0, res_sw, res_hw);
}
print_report(err_cnt, num_tests);
// REV8
neorv32_uart_printf("\nREV8:\n");
err_cnt = 0;
for (i=0;i<num_tests; i++) {
opa = xorshift32();
res_sw = riscv_emulate_rev8(opa);
res_hw = riscv_intrinsic_rev8(opa);
err_cnt += check_result(i, opa, 0, res_sw, res_hw);
}
print_report(err_cnt, num_tests);
neorv32_uart_printf("\nBit manipulation extension tests done.\n");
return 0;
}
/**********************************************************************//**
* Pseudo-Random Number Generator (to generate test vectors).
*
* @return Random data (32-bit).
**************************************************************************/
uint32_t xorshift32(void) {
static uint32_t x32 = 314159265;
x32 ^= x32 << 13;
x32 ^= x32 >> 17;
x32 ^= x32 << 5;
return x32;
}
/**********************************************************************//**
* Check results (reference (SW) vs actual hardware).
*
* @param[in] num Test case number
* @param[in] opa Operand 1
* @param[in] opb Operand 2
* @param[in] ref Software reference
* @param[in] res Actual results
* @return zero if results are equal.
**************************************************************************/
uint32_t check_result(uint32_t num, uint32_t opa, uint32_t opb, uint32_t ref, uint32_t res) {
if (ref != res) {
neorv32_uart_printf("%u: opa = 0x%x, opb = 0x%x : ref = 0x%x vs res = 0x%x ", num, opa, opb, ref, res);
neorv32_uart_printf("%c[1m[FAILED]%c[0m\n", 27, 27);
return 1;
}
else {
return 0;
}
}
/**********************************************************************//**
* Print test report.
*
* @param[in] num_err Number or errors in this test.
* @param[in] num_tests Total number of conducted tests.
**************************************************************************/
void print_report(int num_err, int num_tests) {
neorv32_uart_printf("Errors: %i/%i ", num_err, num_tests);
if (num_err == 0) {
neorv32_uart_printf("%c[1m[ok]%c[0m\n", 27, 27);
}
else {
neorv32_uart_printf("%c[1m[FAILED]%c[0m\n", 27, 27);
}
}