mirror of
https://github.com/vortexgpgpu/vortex.git
synced 2025-04-23 21:39:10 -04:00
Merge branch 'fpga_synthesis' of https://github.gatech.edu/casl/Vortex into fpga_synthesis
This commit is contained in:
commit
5b9ee0bb7b
14 changed files with 2726 additions and 1 deletions
44
benchmarks/new_opencl/kmeans/Makefile
Normal file
44
benchmarks/new_opencl/kmeans/Makefile
Normal file
|
@ -0,0 +1,44 @@
|
|||
LLVM_LIB_PATH ?= $(wildcard ~/dev/riscv-gnu-toolchain/drops/lib)
|
||||
POCLCC_PATH ?= $(wildcard ../compiler)
|
||||
POCLRT_PATH ?= $(wildcard ../runtime)
|
||||
DRIVER_PATH ?= $(wildcard ../../../driver/sw)
|
||||
|
||||
CXXFLAGS += -std=c++11 -O0 -g -fpermissive -Wall -Wextra -pedantic -Wfatal-errors
|
||||
|
||||
CXXFLAGS += -I$(POCLRT_PATH)/include
|
||||
|
||||
LDFLAGS += -L$(POCLRT_PATH)/lib -L$(DRIVER_PATH)/simx -lOpenCL -lvortex
|
||||
|
||||
PROJECT = kmeans
|
||||
|
||||
SRCS = main.cc read_input.c rmse.c kmeans_clustering.c cluster.c getopt.c
|
||||
|
||||
all: $(PROJECT)
|
||||
|
||||
kernel.pocl: kernel.cl
|
||||
POCL_DEBUG=all POCL_DEBUG_LLVM_PASSES=1 LD_LIBRARY_PATH=$(LLVM_LIB_PATH):$(POCLCC_PATH)/lib:$(DRIVER_PATH)/simx $(POCLCC_PATH)/bin/poclcc -o kernel.pocl kernel.cl
|
||||
|
||||
$(PROJECT): $(SRCS)
|
||||
$(CXX) $(CXXFLAGS) $^ $(LDFLAGS) -o $@
|
||||
|
||||
run-fpga: $(PROJECT) kernel.pocl
|
||||
LD_LIBRARY_PATH=$(POCLRT_PATH)/lib:$(DRIVER_PATH)/opae:$(LD_LIBRARY_PATH) ./$(PROJECT)
|
||||
|
||||
run-ase: $(PROJECT) kernel.pocl
|
||||
LD_LIBRARY_PATH=$(POCLRT_PATH)/lib:$(DRIVER_PATH)/opae/ase:$(LD_LIBRARY_PATH) ./$(PROJECT)
|
||||
|
||||
run-simx: $(PROJECT) kernel.pocl
|
||||
LD_LIBRARY_PATH=$(POCLRT_PATH)/lib:$(DRIVER_PATH)/simx:$(LD_LIBRARY_PATH) ./$(PROJECT)
|
||||
|
||||
run-rtlsim: $(PROJECT) kernel.pocl
|
||||
LD_LIBRARY_PATH=$(POCLRT_PATH)/lib:$(DRIVER_PATH)/rtlsim:$(LD_LIBRARY_PATH) ./$(PROJECT)
|
||||
|
||||
.depend: $(SRCS)
|
||||
$(CXX) $(CXXFLAGS) -MM $^ > .depend;
|
||||
|
||||
clean:
|
||||
rm -rf $(PROJECT) *.o *.dump .depend
|
||||
|
||||
ifneq ($(MAKECMDGOALS),clean)
|
||||
-include .depend
|
||||
endif
|
0
benchmarks/new_opencl/kmeans/README
Normal file
0
benchmarks/new_opencl/kmeans/README
Normal file
155
benchmarks/new_opencl/kmeans/cluster.c
Executable file
155
benchmarks/new_opencl/kmeans/cluster.c
Executable file
|
@ -0,0 +1,155 @@
|
|||
/*****************************************************************************/
|
||||
/*IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. */
|
||||
/*By downloading, copying, installing or using the software you agree */
|
||||
/*to this license. If you do not agree to this license, do not download, */
|
||||
/*install, copy or use the software. */
|
||||
/* */
|
||||
/* */
|
||||
/*Copyright (c) 2005 Northwestern University */
|
||||
/*All rights reserved. */
|
||||
|
||||
/*Redistribution of the software in source and binary forms, */
|
||||
/*with or without modification, is permitted provided that the */
|
||||
/*following conditions are met: */
|
||||
/* */
|
||||
/*1 Redistributions of source code must retain the above copyright */
|
||||
/* notice, this list of conditions and the following disclaimer. */
|
||||
/* */
|
||||
/*2 Redistributions in binary form must reproduce the above copyright */
|
||||
/* notice, this list of conditions and the following disclaimer in the */
|
||||
/* documentation and/or other materials provided with the distribution.*/
|
||||
/* */
|
||||
/*3 Neither the name of Northwestern University nor the names of its */
|
||||
/* contributors may be used to endorse or promote products derived */
|
||||
/* from this software without specific prior written permission. */
|
||||
/* */
|
||||
/*THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS */
|
||||
/*IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED */
|
||||
/*TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT AND */
|
||||
/*FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL */
|
||||
/*NORTHWESTERN UNIVERSITY OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, */
|
||||
/*INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
|
||||
/*(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR */
|
||||
/*SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) */
|
||||
/*HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, */
|
||||
/*STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN */
|
||||
/*ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
|
||||
/*POSSIBILITY OF SUCH DAMAGE. */
|
||||
/******************************************************************************/
|
||||
|
||||
/*************************************************************************/
|
||||
/** File: cluster.c **/
|
||||
/** Description: Takes as input a file, containing 1 data point per **/
|
||||
/** per line, and performs a fuzzy c-means clustering **/
|
||||
/** on the data. Fuzzy clustering is performed using **/
|
||||
/** min to max clusters and the clustering that gets **/
|
||||
/** the best score according to a compactness and **/
|
||||
/** separation criterion are returned. **/
|
||||
/** Author: Brendan McCane **/
|
||||
/** James Cook University of North Queensland. **/
|
||||
/** Australia. email: mccane@cs.jcu.edu.au **/
|
||||
/** **/
|
||||
/** Edited by: Jay Pisharath, Wei-keng Liao **/
|
||||
/** Northwestern University. **/
|
||||
/** **/
|
||||
/** ================================================================ **/
|
||||
/** **/
|
||||
/** Edited by: Shuai Che, David Tarjan, Sang-Ha Lee **/
|
||||
/** University of Virginia **/
|
||||
/** **/
|
||||
/** Description: No longer supports fuzzy c-means clustering; **/
|
||||
/** only regular k-means clustering. **/
|
||||
/** No longer performs "validity" function to analyze **/
|
||||
/** compactness and separation crietria; instead **/
|
||||
/** calculate root mean squared error. **/
|
||||
/** **/
|
||||
/*************************************************************************/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <limits.h>
|
||||
#include <math.h>
|
||||
#include <float.h>
|
||||
#include "kmeans.h"
|
||||
|
||||
float min_rmse_ref = FLT_MAX;
|
||||
extern double wtime(void);
|
||||
/* reference min_rmse value */
|
||||
|
||||
/*---< cluster() >-----------------------------------------------------------*/
|
||||
int cluster(int npoints, /* number of data points */
|
||||
int nfeatures, /* number of attributes for each point */
|
||||
float **features, /* array: [npoints][nfeatures] */
|
||||
int min_nclusters, /* range of min to max number of clusters */
|
||||
int max_nclusters,
|
||||
float threshold, /* loop terminating factor */
|
||||
int *best_nclusters, /* out: number between min and max with lowest RMSE */
|
||||
float ***cluster_centres, /* out: [best_nclusters][nfeatures] */
|
||||
float *min_rmse, /* out: minimum RMSE */
|
||||
int isRMSE, /* calculate RMSE */
|
||||
int nloops /* number of iteration for each number of clusters */
|
||||
)
|
||||
{
|
||||
int nclusters; /* number of clusters k */
|
||||
int index =0; /* number of iteration to reach the best RMSE */
|
||||
int rmse; /* RMSE for each clustering */
|
||||
int *membership; /* which cluster a data point belongs to */
|
||||
float **tmp_cluster_centres; /* hold coordinates of cluster centers */
|
||||
int i;
|
||||
|
||||
/* allocate memory for membership */
|
||||
membership = (int*) malloc(npoints * sizeof(int));
|
||||
|
||||
/* sweep k from min to max_nclusters to find the best number of clusters */
|
||||
for(nclusters = min_nclusters; nclusters <= max_nclusters; nclusters++)
|
||||
{
|
||||
if (nclusters > npoints) break; /* cannot have more clusters than points */
|
||||
|
||||
/* allocate device memory, invert data array (@ kmeans_cuda.cu) */
|
||||
allocate(npoints, nfeatures, nclusters, features);
|
||||
|
||||
/* iterate nloops times for each number of clusters */
|
||||
for(i = 0; i < nloops; i++)
|
||||
{
|
||||
/* initialize initial cluster centers, CUDA calls (@ kmeans_cuda.cu) */
|
||||
tmp_cluster_centres = kmeans_clustering(features,
|
||||
nfeatures,
|
||||
npoints,
|
||||
nclusters,
|
||||
threshold,
|
||||
membership);
|
||||
|
||||
if (*cluster_centres) {
|
||||
free((*cluster_centres)[0]);
|
||||
free(*cluster_centres);
|
||||
}
|
||||
*cluster_centres = tmp_cluster_centres;
|
||||
|
||||
|
||||
/* find the number of clusters with the best RMSE */
|
||||
if(isRMSE)
|
||||
{
|
||||
rmse = rms_err(features,
|
||||
nfeatures,
|
||||
npoints,
|
||||
tmp_cluster_centres,
|
||||
nclusters);
|
||||
|
||||
if(rmse < min_rmse_ref){
|
||||
min_rmse_ref = rmse; //update reference min RMSE
|
||||
*min_rmse = min_rmse_ref; //update return min RMSE
|
||||
*best_nclusters = nclusters; //update optimum number of clusters
|
||||
index = i; //update number of iteration to reach best RMSE
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
deallocateMemory(); /* free device memory (@ kmeans_cuda.cu) */
|
||||
}
|
||||
|
||||
free(membership);
|
||||
|
||||
return index;
|
||||
}
|
||||
|
1184
benchmarks/new_opencl/kmeans/getopt.c
Executable file
1184
benchmarks/new_opencl/kmeans/getopt.c
Executable file
File diff suppressed because it is too large
Load diff
191
benchmarks/new_opencl/kmeans/getopt.h
Executable file
191
benchmarks/new_opencl/kmeans/getopt.h
Executable file
|
@ -0,0 +1,191 @@
|
|||
|
||||
|
||||
/* getopt.h */
|
||||
/* Declarations for getopt.
|
||||
Copyright (C) 1989-1994, 1996-1999, 2001 Free Software
|
||||
Foundation, Inc. This file is part of the GNU C Library.
|
||||
|
||||
The GNU C Library is free software; you can redistribute
|
||||
it and/or modify it under the terms of the GNU Lesser
|
||||
General Public License as published by the Free Software
|
||||
Foundation; either version 2.1 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
The GNU C Library is distributed in the hope that it will
|
||||
be useful, but WITHOUT ANY WARRANTY; without even the
|
||||
implied warranty of MERCHANTABILITY or FITNESS FOR A
|
||||
PARTICULAR PURPOSE. See the GNU Lesser General Public
|
||||
License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General
|
||||
Public License along with the GNU C Library; if not, write
|
||||
to the Free Software Foundation, Inc., 59 Temple Place,
|
||||
Suite 330, Boston, MA 02111-1307 USA. */
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
#ifndef _GETOPT_H
|
||||
|
||||
#ifndef __need_getopt
|
||||
# define _GETOPT_H 1
|
||||
#endif
|
||||
|
||||
/* If __GNU_LIBRARY__ is not already defined, either we are being used
|
||||
standalone, or this is the first header included in the source file.
|
||||
If we are being used with glibc, we need to include <features.h>, but
|
||||
that does not exist if we are standalone. So: if __GNU_LIBRARY__ is
|
||||
not defined, include <ctype.h>, which will pull in <features.h> for us
|
||||
if it's from glibc. (Why ctype.h? It's guaranteed to exist and it
|
||||
doesn't flood the namespace with stuff the way some other headers do.) */
|
||||
#if !defined __GNU_LIBRARY__
|
||||
# include <ctype.h>
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/* For communication from `getopt' to the caller.
|
||||
When `getopt' finds an option that takes an argument,
|
||||
the argument value is returned here.
|
||||
Also, when `ordering' is RETURN_IN_ORDER,
|
||||
each non-option ARGV-element is returned here. */
|
||||
|
||||
extern char *optarg;
|
||||
|
||||
/* Index in ARGV of the next element to be scanned.
|
||||
This is used for communication to and from the caller
|
||||
and for communication between successive calls to `getopt'.
|
||||
|
||||
On entry to `getopt', zero means this is the first call; initialize.
|
||||
|
||||
When `getopt' returns -1, this is the index of the first of the
|
||||
non-option elements that the caller should itself scan.
|
||||
|
||||
Otherwise, `optind' communicates from one call to the next
|
||||
how much of ARGV has been scanned so far. */
|
||||
|
||||
extern int optind;
|
||||
|
||||
/* Callers store zero here to inhibit the error message `getopt' prints
|
||||
for unrecognized options. */
|
||||
|
||||
extern int opterr;
|
||||
|
||||
/* Set to an option character which was unrecognized. */
|
||||
|
||||
extern int optopt;
|
||||
|
||||
#ifndef __need_getopt
|
||||
/* Describe the long-named options requested by the application.
|
||||
The LONG_OPTIONS argument to getopt_long or getopt_long_only is a vector
|
||||
of `struct option' terminated by an element containing a name which is
|
||||
zero.
|
||||
|
||||
The field `has_arg' is:
|
||||
no_argument (or 0) if the option does not take an argument,
|
||||
required_argument (or 1) if the option requires an argument,
|
||||
optional_argument (or 2) if the option takes an optional argument.
|
||||
|
||||
If the field `flag' is not NULL, it points to a variable that is set
|
||||
to the value given in the field `val' when the option is found, but
|
||||
left unchanged if the option is not found.
|
||||
|
||||
To have a long-named option do something other than set an `int' to
|
||||
a compiled-in constant, such as set a value from `optarg', set the
|
||||
option's `flag' field to zero and its `val' field to a nonzero
|
||||
value (the equivalent single-letter option character, if there is
|
||||
one). For long options that have a zero `flag' field, `getopt'
|
||||
returns the contents of the `val' field. */
|
||||
|
||||
struct option
|
||||
{
|
||||
# if (defined __STDC__ && __STDC__) || defined __cplusplus
|
||||
const char *name;
|
||||
# else
|
||||
char *name;
|
||||
# endif
|
||||
/* has_arg can't be an enum because some compilers complain about
|
||||
type mismatches in all the code that assumes it is an int. */
|
||||
int has_arg;
|
||||
int *flag;
|
||||
int val;
|
||||
};
|
||||
|
||||
/* Names for the values of the `has_arg' field of `struct option'. */
|
||||
|
||||
# define no_argument 0
|
||||
# define required_argument 1
|
||||
# define optional_argument 2
|
||||
#endif /* need getopt */
|
||||
|
||||
|
||||
/* Get definitions and prototypes for functions to process the
|
||||
arguments in ARGV (ARGC of them, minus the program name) for
|
||||
options given in OPTS.
|
||||
|
||||
Return the option character from OPTS just read. Return -1 when
|
||||
there are no more options. For unrecognized options, or options
|
||||
missing arguments, `optopt' is set to the option letter, and '?' is
|
||||
returned.
|
||||
|
||||
The OPTS string is a list of characters which are recognized option
|
||||
letters, optionally followed by colons, specifying that that letter
|
||||
takes an argument, to be placed in `optarg'.
|
||||
|
||||
If a letter in OPTS is followed by two colons, its argument is
|
||||
optional. This behavior is specific to the GNU `getopt'.
|
||||
|
||||
The argument `--' causes premature termination of argument
|
||||
scanning, explicitly telling `getopt' that there are no more
|
||||
options.
|
||||
|
||||
If OPTS begins with `--', then non-option arguments are treated as
|
||||
arguments to the option '\0'. This behavior is specific to the GNU
|
||||
`getopt'. */
|
||||
|
||||
#if (defined __STDC__ && __STDC__) || defined __cplusplus
|
||||
# ifdef __GNU_LIBRARY__
|
||||
/* Many other libraries have conflicting prototypes for getopt, with
|
||||
differences in the consts, in stdlib.h. To avoid compilation
|
||||
errors, only prototype getopt for the GNU C library. */
|
||||
extern int getopt (int ___argc, char *const *___argv, const char *__shortopts);
|
||||
# else /* not __GNU_LIBRARY__ */
|
||||
extern int getopt ();
|
||||
# endif /* __GNU_LIBRARY__ */
|
||||
|
||||
# ifndef __need_getopt
|
||||
extern int getopt_long (int ___argc, char *const *___argv,
|
||||
const char *__shortopts,
|
||||
const struct option *__longopts, int *__longind);
|
||||
extern int getopt_long_only (int ___argc, char *const *___argv,
|
||||
const char *__shortopts,
|
||||
const struct option *__longopts, int *__longind);
|
||||
|
||||
/* Internal only. Users should not call this directly. */
|
||||
extern int _getopt_internal (int ___argc, char *const *___argv,
|
||||
const char *__shortopts,
|
||||
const struct option *__longopts, int *__longind,
|
||||
int __long_only);
|
||||
# endif
|
||||
#else /* not __STDC__ */
|
||||
extern int getopt ();
|
||||
# ifndef __need_getopt
|
||||
extern int getopt_long ();
|
||||
extern int getopt_long_only ();
|
||||
|
||||
extern int _getopt_internal ();
|
||||
# endif
|
||||
#endif /* __STDC__ */
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Make sure we later can get all the definitions and declarations. */
|
||||
#undef __need_getopt
|
||||
|
||||
#endif /* getopt.h */
|
||||
|
61
benchmarks/new_opencl/kmeans/kernel.cl
Executable file
61
benchmarks/new_opencl/kmeans/kernel.cl
Executable file
|
@ -0,0 +1,61 @@
|
|||
#ifndef FLT_MAX
|
||||
#define FLT_MAX 3.40282347e+38
|
||||
#endif
|
||||
|
||||
__kernel void
|
||||
kmeans_kernel_c(__global float *feature,
|
||||
__global float *clusters,
|
||||
__global int *membership,
|
||||
int npoints,
|
||||
int nclusters,
|
||||
int nfeatures,
|
||||
int offset,
|
||||
int size
|
||||
)
|
||||
{
|
||||
unsigned int point_id = get_global_id(0);
|
||||
int index = 0;
|
||||
//const unsigned int point_id = get_global_id(0);
|
||||
if (point_id < npoints)
|
||||
{
|
||||
float min_dist=FLT_MAX;
|
||||
for (int i=0; i < nclusters; i++) {
|
||||
|
||||
float dist = 0;
|
||||
float ans = 0;
|
||||
for (int l=0; l<nfeatures; l++){
|
||||
ans += (feature[l * npoints + point_id]-clusters[i*nfeatures+l])*
|
||||
(feature[l * npoints + point_id]-clusters[i*nfeatures+l]);
|
||||
}
|
||||
|
||||
dist = ans;
|
||||
if (dist < min_dist) {
|
||||
min_dist = dist;
|
||||
index = i;
|
||||
|
||||
}
|
||||
}
|
||||
//printf("%d\n", index);
|
||||
membership[point_id] = index;
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
__kernel void
|
||||
kmeans_swap(__global float *feature,
|
||||
__global float *feature_swap,
|
||||
int npoints,
|
||||
int nfeatures
|
||||
){
|
||||
|
||||
unsigned int tid = get_global_id(0);
|
||||
//for(int i = 0; i < nfeatures; i++)
|
||||
// feature_swap[i * npoints + tid] = feature[tid * nfeatures + i];
|
||||
//Lingjie Zhang modificated at 11/05/2015
|
||||
if (tid < npoints){
|
||||
for(int i = 0; i < nfeatures; i++)
|
||||
feature_swap[i * npoints + tid] = feature[tid * nfeatures + i];
|
||||
}
|
||||
// end of Lingjie Zhang's modification
|
||||
}
|
BIN
benchmarks/new_opencl/kmeans/kmeans
Executable file
BIN
benchmarks/new_opencl/kmeans/kmeans
Executable file
Binary file not shown.
65
benchmarks/new_opencl/kmeans/kmeans.h
Executable file
65
benchmarks/new_opencl/kmeans/kmeans.h
Executable file
|
@ -0,0 +1,65 @@
|
|||
/*****************************************************************************/
|
||||
/*IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. */
|
||||
/*By downloading, copying, installing or using the software you agree */
|
||||
/*to this license. If you do not agree to this license, do not download, */
|
||||
/*install, copy or use the software. */
|
||||
/* */
|
||||
/* */
|
||||
/*Copyright (c) 2005 Northwestern University */
|
||||
/*All rights reserved. */
|
||||
|
||||
/*Redistribution of the software in source and binary forms, */
|
||||
/*with or without modification, is permitted provided that the */
|
||||
/*following conditions are met: */
|
||||
/* */
|
||||
/*1 Redistributions of source code must retain the above copyright */
|
||||
/* notice, this list of conditions and the following disclaimer. */
|
||||
/* */
|
||||
/*2 Redistributions in binary form must reproduce the above copyright */
|
||||
/* notice, this list of conditions and the following disclaimer in the */
|
||||
/* documentation and/or other materials provided with the distribution.*/
|
||||
/* */
|
||||
/*3 Neither the name of Northwestern University nor the names of its */
|
||||
/* contributors may be used to endorse or promote products derived */
|
||||
/* from this software without specific prior written permission. */
|
||||
/* */
|
||||
/*THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS */
|
||||
/*IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED */
|
||||
/*TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT AND */
|
||||
/*FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL */
|
||||
/*NORTHWESTERN UNIVERSITY OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, */
|
||||
/*INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
|
||||
/*(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR */
|
||||
/*SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) */
|
||||
/*HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, */
|
||||
/*STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN */
|
||||
/*ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
|
||||
/*POSSIBILITY OF SUCH DAMAGE. */
|
||||
/******************************************************************************/
|
||||
|
||||
#ifndef _H_FUZZY_KMEANS
|
||||
#define _H_FUZZY_KMEANS
|
||||
|
||||
#ifndef FLT_MAX
|
||||
#define FLT_MAX 3.40282347e+38
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
float euclid_dist_2 (float*, float*, int);
|
||||
int find_nearest_point (float* , int, float**, int);
|
||||
float rms_err(float**, int, int, float**, int);
|
||||
int cluster(int, int, float**, int, int, float, int*, float***, float*, int, int);
|
||||
int setup(int argc, char** argv);
|
||||
int allocate(int npoints, int nfeatures, int nclusters, float **feature);
|
||||
void deallocateMemory();
|
||||
int kmeansOCL(float **feature, int nfeatures, int npoints, int nclusters, int *membership, float **clusters, int *new_centers_len, float **new_centers);
|
||||
float** kmeans_clustering(float **feature, int nfeatures, int npoints, int nclusters, float threshold, int *membership);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
176
benchmarks/new_opencl/kmeans/kmeans_clustering.c
Executable file
176
benchmarks/new_opencl/kmeans/kmeans_clustering.c
Executable file
|
@ -0,0 +1,176 @@
|
|||
/*****************************************************************************/
|
||||
/*IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. */
|
||||
/*By downloading, copying, installing or using the software you agree */
|
||||
/*to this license. If you do not agree to this license, do not download, */
|
||||
/*install, copy or use the software. */
|
||||
/* */
|
||||
/* */
|
||||
/*Copyright (c) 2005 Northwestern University */
|
||||
/*All rights reserved. */
|
||||
|
||||
/*Redistribution of the software in source and binary forms, */
|
||||
/*with or without modification, is permitted provided that the */
|
||||
/*following conditions are met: */
|
||||
/* */
|
||||
/*1 Redistributions of source code must retain the above copyright */
|
||||
/* notice, this list of conditions and the following disclaimer. */
|
||||
/* */
|
||||
/*2 Redistributions in binary form must reproduce the above copyright */
|
||||
/* notice, this list of conditions and the following disclaimer in the */
|
||||
/* documentation and/or other materials provided with the distribution.*/
|
||||
/* */
|
||||
/*3 Neither the name of Northwestern University nor the names of its */
|
||||
/* contributors may be used to endorse or promote products derived */
|
||||
/* from this software without specific prior written permission. */
|
||||
/* */
|
||||
/*THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS */
|
||||
/*IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED */
|
||||
/*TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT AND */
|
||||
/*FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL */
|
||||
/*NORTHWESTERN UNIVERSITY OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, */
|
||||
/*INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
|
||||
/*(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR */
|
||||
/*SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) */
|
||||
/*HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, */
|
||||
/*STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN */
|
||||
/*ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
|
||||
/*POSSIBILITY OF SUCH DAMAGE. */
|
||||
/******************************************************************************/
|
||||
|
||||
/*************************************************************************/
|
||||
/** File: kmeans_clustering.c **/
|
||||
/** Description: Implementation of regular k-means clustering **/
|
||||
/** algorithm **/
|
||||
/** Author: Wei-keng Liao **/
|
||||
/** ECE Department, Northwestern University **/
|
||||
/** email: wkliao@ece.northwestern.edu **/
|
||||
/** **/
|
||||
/** Edited by: Jay Pisharath **/
|
||||
/** Northwestern University. **/
|
||||
/** **/
|
||||
/** ================================================================ **/
|
||||
/** **/
|
||||
/** Edited by: Shuai Che, David Tarjan, Sang-Ha Lee **/
|
||||
/** University of Virginia **/
|
||||
/** **/
|
||||
/** Description: No longer supports fuzzy c-means clustering; **/
|
||||
/** only regular k-means clustering. **/
|
||||
/** No longer performs "validity" function to analyze **/
|
||||
/** compactness and separation crietria; instead **/
|
||||
/** calculate root mean squared error. **/
|
||||
/** **/
|
||||
/*************************************************************************/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <float.h>
|
||||
#include <math.h>
|
||||
#include "kmeans.h"
|
||||
|
||||
#define RANDOM_MAX 2147483647
|
||||
|
||||
extern double wtime(void);
|
||||
|
||||
/*----< kmeans_clustering() >---------------------------------------------*/
|
||||
float** kmeans_clustering(float **feature, /* in: [npoints][nfeatures] */
|
||||
int nfeatures,
|
||||
int npoints,
|
||||
int nclusters,
|
||||
float threshold,
|
||||
int *membership) /* out: [npoints] */
|
||||
{
|
||||
int i, j, n = 0; /* counters */
|
||||
int loop=0, temp;
|
||||
int *new_centers_len; /* [nclusters]: no. of points in each cluster */
|
||||
float delta; /* if the point moved */
|
||||
float **clusters; /* out: [nclusters][nfeatures] */
|
||||
float **new_centers; /* [nclusters][nfeatures] */
|
||||
|
||||
int *initial; /* used to hold the index of points not yet selected
|
||||
prevents the "birthday problem" of dual selection (?)
|
||||
considered holding initial cluster indices, but changed due to
|
||||
possible, though unlikely, infinite loops */
|
||||
int initial_points;
|
||||
int c = 0;
|
||||
|
||||
/* nclusters should never be > npoints
|
||||
that would guarantee a cluster without points */
|
||||
if (nclusters > npoints)
|
||||
nclusters = npoints;
|
||||
|
||||
/* allocate space for and initialize returning variable clusters[] */
|
||||
clusters = (float**) malloc(nclusters * sizeof(float*));
|
||||
clusters[0] = (float*) malloc(nclusters * nfeatures * sizeof(float));
|
||||
for (i=1; i<nclusters; i++)
|
||||
clusters[i] = clusters[i-1] + nfeatures;
|
||||
|
||||
/* initialize the random clusters */
|
||||
initial = (int *) malloc (npoints * sizeof(int));
|
||||
for (i = 0; i < npoints; i++)
|
||||
{
|
||||
initial[i] = i;
|
||||
}
|
||||
initial_points = npoints;
|
||||
|
||||
/* randomly pick cluster centers */
|
||||
for (i=0; i<nclusters && initial_points >= 0; i++) {
|
||||
//n = (int)rand() % initial_points;
|
||||
|
||||
for (j=0; j<nfeatures; j++)
|
||||
clusters[i][j] = feature[initial[n]][j]; // remapped
|
||||
|
||||
/* swap the selected index to the end (not really necessary,
|
||||
could just move the end up) */
|
||||
temp = initial[n];
|
||||
initial[n] = initial[initial_points-1];
|
||||
initial[initial_points-1] = temp;
|
||||
initial_points--;
|
||||
n++;
|
||||
}
|
||||
|
||||
/* initialize the membership to -1 for all */
|
||||
for (i=0; i < npoints; i++)
|
||||
membership[i] = -1;
|
||||
|
||||
/* allocate space for and initialize new_centers_len and new_centers */
|
||||
new_centers_len = (int*) calloc(nclusters, sizeof(int));
|
||||
|
||||
new_centers = (float**) malloc(nclusters * sizeof(float*));
|
||||
new_centers[0] = (float*) calloc(nclusters * nfeatures, sizeof(float));
|
||||
for (i=1; i<nclusters; i++)
|
||||
new_centers[i] = new_centers[i-1] + nfeatures;
|
||||
|
||||
/* iterate until convergence */
|
||||
do {
|
||||
delta = 0.0;
|
||||
// CUDA
|
||||
delta = (float) kmeansOCL(feature, /* in: [npoints][nfeatures] */
|
||||
nfeatures, /* number of attributes for each point */
|
||||
npoints, /* number of data points */
|
||||
nclusters, /* number of clusters */
|
||||
membership, /* which cluster the point belongs to */
|
||||
clusters, /* out: [nclusters][nfeatures] */
|
||||
new_centers_len, /* out: number of points in each cluster */
|
||||
new_centers /* sum of points in each cluster */
|
||||
);
|
||||
|
||||
/* replace old cluster centers with new_centers */
|
||||
/* CPU side of reduction */
|
||||
for (i=0; i<nclusters; i++) {
|
||||
for (j=0; j<nfeatures; j++) {
|
||||
if (new_centers_len[i] > 0)
|
||||
clusters[i][j] = new_centers[i][j] / new_centers_len[i]; /* take average i.e. sum/n */
|
||||
new_centers[i][j] = 0.0; /* set back to 0 */
|
||||
}
|
||||
new_centers_len[i] = 0; /* set back to 0 */
|
||||
}
|
||||
c++;
|
||||
} while ((delta > threshold) && (loop++ < 500)); /* makes sure loop terminates */
|
||||
printf("iterated %d times\n", c);
|
||||
free(new_centers[0]);
|
||||
free(new_centers);
|
||||
free(new_centers_len);
|
||||
|
||||
return clusters;
|
||||
}
|
||||
|
BIN
benchmarks/new_opencl/kmeans/libkmeans.a
Normal file
BIN
benchmarks/new_opencl/kmeans/libkmeans.a
Normal file
Binary file not shown.
382
benchmarks/new_opencl/kmeans/main.cc
Executable file
382
benchmarks/new_opencl/kmeans/main.cc
Executable file
|
@ -0,0 +1,382 @@
|
|||
#include "kmeans.h"
|
||||
#include <iostream>
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <string>
|
||||
|
||||
#ifdef WIN
|
||||
#include <windows.h>
|
||||
#else
|
||||
#include <pthread.h>
|
||||
#include <sys/time.h>
|
||||
double gettime() {
|
||||
struct timeval t;
|
||||
gettimeofday(&t, NULL);
|
||||
return t.tv_sec + t.tv_usec * 1e-6;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef NV
|
||||
#include <oclUtils.h>
|
||||
#else
|
||||
#include <CL/cl.h>
|
||||
#endif
|
||||
|
||||
#ifndef FLT_MAX
|
||||
#define FLT_MAX 3.40282347e+38
|
||||
#endif
|
||||
|
||||
#ifdef RD_WG_SIZE_0_0
|
||||
#define BLOCK_SIZE RD_WG_SIZE_0_0
|
||||
#elif defined(RD_WG_SIZE_0)
|
||||
#define BLOCK_SIZE RD_WG_SIZE_0
|
||||
#elif defined(RD_WG_SIZE)
|
||||
#define BLOCK_SIZE RD_WG_SIZE
|
||||
#else
|
||||
#define BLOCK_SIZE 256
|
||||
#endif
|
||||
|
||||
#ifdef RD_WG_SIZE_1_0
|
||||
#define BLOCK_SIZE2 RD_WG_SIZE_1_0
|
||||
#elif defined(RD_WG_SIZE_1)
|
||||
#define BLOCK_SIZE2 RD_WG_SIZE_1
|
||||
#elif defined(RD_WG_SIZE)
|
||||
#define BLOCK_SIZE2 RD_WG_SIZE
|
||||
#else
|
||||
#define BLOCK_SIZE2 256
|
||||
#endif
|
||||
|
||||
// local variables
|
||||
static cl_context context;
|
||||
static cl_command_queue cmd_queue;
|
||||
static cl_device_type device_type;
|
||||
static cl_device_id *device_list;
|
||||
static cl_int num_devices;
|
||||
|
||||
static int initialize(int use_gpu) {
|
||||
cl_int result;
|
||||
size_t size;
|
||||
|
||||
/*// create OpenCL context
|
||||
cl_platform_id platform_id;
|
||||
if (clGetPlatformIDs(1, &platform_id, NULL) != CL_SUCCESS) {
|
||||
printf("ERROR: clGetPlatformIDs(1,*,0) failed\n");
|
||||
return -1;
|
||||
}
|
||||
cl_context_properties ctxprop[] = {CL_CONTEXT_PLATFORM,
|
||||
(cl_context_properties)platform_id, 0};
|
||||
device_type = use_gpu ? CL_DEVICE_TYPE_GPU : CL_DEVICE_TYPE_CPU;
|
||||
context = clCreateContextFromType(ctxprop, device_type, NULL, NULL, NULL);
|
||||
if (!context) {
|
||||
printf("ERROR: clCreateContextFromType(%s) failed\n",
|
||||
use_gpu ? "GPU" : "CPU");
|
||||
return -1;
|
||||
}
|
||||
|
||||
// get the list of GPUs
|
||||
result = clGetContextInfo(context, CL_CONTEXT_DEVICES, 0, NULL, &size);
|
||||
num_devices = (int)(size / sizeof(cl_device_id));
|
||||
|
||||
if (result != CL_SUCCESS || num_devices < 1) {
|
||||
printf("ERROR: clGetContextInfo() failed\n");
|
||||
return -1;
|
||||
}
|
||||
device_list = new cl_device_id[num_devices];
|
||||
if (!device_list) {
|
||||
printf("ERROR: new cl_device_id[] failed\n");
|
||||
return -1;
|
||||
}
|
||||
result =
|
||||
clGetContextInfo(context, CL_CONTEXT_DEVICES, size, device_list, NULL);
|
||||
if (result != CL_SUCCESS) {
|
||||
printf("ERROR: clGetContextInfo() failed\n");
|
||||
return -1;
|
||||
}*/
|
||||
|
||||
cl_platform_id platform_id;
|
||||
num_devices = 1;
|
||||
device_list = new cl_device_id[num_devices];
|
||||
|
||||
result = clGetPlatformIDs(1, &platform_id, NULL);
|
||||
result = clGetDeviceIDs(platform_id, CL_DEVICE_TYPE_DEFAULT, 1, device_list, NULL);
|
||||
context = clCreateContext(NULL, 1, device_list, NULL, NULL, &result);
|
||||
|
||||
// create command queue for the first device
|
||||
cmd_queue = clCreateCommandQueue(context, device_list[0], 0, NULL);
|
||||
if (!cmd_queue) {
|
||||
printf("ERROR: clCreateCommandQueue() failed\n");
|
||||
return -1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int shutdown() {
|
||||
// release resources
|
||||
if (cmd_queue)
|
||||
clReleaseCommandQueue(cmd_queue);
|
||||
if (context)
|
||||
clReleaseContext(context);
|
||||
if (device_list)
|
||||
delete device_list;
|
||||
|
||||
// reset all variables
|
||||
cmd_queue = 0;
|
||||
context = 0;
|
||||
device_list = 0;
|
||||
num_devices = 0;
|
||||
device_type = 0;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
cl_mem d_feature;
|
||||
cl_mem d_feature_swap;
|
||||
cl_mem d_cluster;
|
||||
cl_mem d_membership;
|
||||
|
||||
cl_kernel kernel;
|
||||
cl_kernel kernel_s;
|
||||
cl_kernel kernel2;
|
||||
|
||||
int *membership_OCL;
|
||||
int *membership_d;
|
||||
float *feature_d;
|
||||
float *clusters_d;
|
||||
float *center_d;
|
||||
|
||||
|
||||
static int read_kernel_file(const char* filename, uint8_t** data, size_t* size) {
|
||||
if (nullptr == filename || nullptr == data || 0 == size)
|
||||
return -1;
|
||||
|
||||
FILE* fp = fopen(filename, "r");
|
||||
if (NULL == fp) {
|
||||
fprintf(stderr, "Failed to load kernel.");
|
||||
return -1;
|
||||
}
|
||||
fseek(fp , 0 , SEEK_END);
|
||||
long fsize = ftell(fp);
|
||||
rewind(fp);
|
||||
|
||||
*data = (uint8_t*)malloc(fsize);
|
||||
*size = fread(*data, 1, fsize, fp);
|
||||
|
||||
fclose(fp);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
int allocate(int n_points, int n_features, int n_clusters, float **feature) {
|
||||
/*int sourcesize = 1024 * 1024;
|
||||
char *source = (char *)calloc(sourcesize, sizeof(char));
|
||||
if (!source) {
|
||||
printf("ERROR: calloc(%d) failed\n", sourcesize);
|
||||
return -1;
|
||||
}
|
||||
|
||||
// read the kernel core source
|
||||
char *tempchar = "./kmeans.cl";
|
||||
FILE *fp = fopen(tempchar, "rb");
|
||||
if (!fp) {
|
||||
printf("ERROR: unable to open '%s'\n", tempchar);
|
||||
return -1;
|
||||
}
|
||||
fread(source + strlen(source), sourcesize, 1, fp);
|
||||
fclose(fp);*/
|
||||
|
||||
// OpenCL initialization
|
||||
int use_gpu = 1;
|
||||
if (initialize(use_gpu))
|
||||
return -1;
|
||||
|
||||
// compile kernel
|
||||
cl_int err = 0;
|
||||
//const char *slist[2] = {source, 0};
|
||||
//cl_program prog = clCreateProgramWithSource(context, 1, slist, NULL, &err);
|
||||
cl_program prog = clCreateProgramWithBuiltInKernels(context, 1, device_list, "kmeans_kernel_c;kmeans_swap", &err);
|
||||
if (err != CL_SUCCESS) {
|
||||
printf("ERROR: clCreateProgramWithSource() => %d\n", err);
|
||||
return -1;
|
||||
}
|
||||
err = clBuildProgram(prog, 0, NULL, NULL, NULL, NULL);
|
||||
{ // show warnings/errors
|
||||
// static char log[65536]; memset(log, 0, sizeof(log));
|
||||
// cl_device_id device_id = 0;
|
||||
// err = clGetContextInfo(context, CL_CONTEXT_DEVICES, sizeof(device_id),
|
||||
//&device_id, NULL);
|
||||
// clGetProgramBuildInfo(prog, device_id, CL_PROGRAM_BUILD_LOG,
|
||||
// sizeof(log)-1, log, NULL);
|
||||
// if(err || strstr(log,"warning:") || strstr(log, "error:"))
|
||||
// printf("<<<<\n%s\n>>>>\n", log);
|
||||
}
|
||||
if (err != CL_SUCCESS) {
|
||||
printf("ERROR: clBuildProgram() => %d\n", err);
|
||||
return -1;
|
||||
}
|
||||
|
||||
char *kernel_kmeans_c = "kmeans_kernel_c";
|
||||
char *kernel_swap = "kmeans_swap";
|
||||
|
||||
kernel_s = clCreateKernel(prog, kernel_kmeans_c, &err);
|
||||
if (err != CL_SUCCESS) {
|
||||
printf("ERROR: clCreateKernel() 0 => %d\n", err);
|
||||
return -1;
|
||||
}
|
||||
kernel2 = clCreateKernel(prog, kernel_swap, &err);
|
||||
if (err != CL_SUCCESS) {
|
||||
printf("ERROR: clCreateKernel() 0 => %d\n", err);
|
||||
return -1;
|
||||
}
|
||||
|
||||
clReleaseProgram(prog);
|
||||
|
||||
d_feature = clCreateBuffer(context, CL_MEM_READ_WRITE,
|
||||
n_points * n_features * sizeof(float), NULL, &err);
|
||||
if (err != CL_SUCCESS) {
|
||||
printf("ERROR: clCreateBuffer d_feature (size:%d) => %d\n",
|
||||
n_points * n_features, err);
|
||||
return -1;
|
||||
}
|
||||
d_feature_swap =
|
||||
clCreateBuffer(context, CL_MEM_READ_WRITE,
|
||||
n_points * n_features * sizeof(float), NULL, &err);
|
||||
if (err != CL_SUCCESS) {
|
||||
printf("ERROR: clCreateBuffer d_feature_swap (size:%d) => %d\n",
|
||||
n_points * n_features, err);
|
||||
return -1;
|
||||
}
|
||||
d_cluster =
|
||||
clCreateBuffer(context, CL_MEM_READ_WRITE,
|
||||
n_clusters * n_features * sizeof(float), NULL, &err);
|
||||
if (err != CL_SUCCESS) {
|
||||
printf("ERROR: clCreateBuffer d_cluster (size:%d) => %d\n",
|
||||
n_clusters * n_features, err);
|
||||
return -1;
|
||||
}
|
||||
d_membership = clCreateBuffer(context, CL_MEM_READ_WRITE,
|
||||
n_points * sizeof(int), NULL, &err);
|
||||
if (err != CL_SUCCESS) {
|
||||
printf("ERROR: clCreateBuffer d_membership (size:%d) => %d\n", n_points,
|
||||
err);
|
||||
return -1;
|
||||
}
|
||||
|
||||
// write buffers
|
||||
err = clEnqueueWriteBuffer(cmd_queue, d_feature, 1, 0,
|
||||
n_points * n_features * sizeof(float), feature[0],
|
||||
0, 0, 0);
|
||||
if (err != CL_SUCCESS) {
|
||||
printf("ERROR: clEnqueueWriteBuffer d_feature (size:%d) => %d\n",
|
||||
n_points * n_features, err);
|
||||
return -1;
|
||||
}
|
||||
|
||||
clSetKernelArg(kernel2, 0, sizeof(void *), (void *)&d_feature);
|
||||
clSetKernelArg(kernel2, 1, sizeof(void *), (void *)&d_feature_swap);
|
||||
clSetKernelArg(kernel2, 2, sizeof(cl_int), (void *)&n_points);
|
||||
clSetKernelArg(kernel2, 3, sizeof(cl_int), (void *)&n_features);
|
||||
|
||||
size_t global_work[3] = {n_points, 1, 1};
|
||||
/// Ke Wang adjustable local group size 2013/08/07 10:37:33
|
||||
size_t local_work_size = BLOCK_SIZE; // work group size is defined by
|
||||
// RD_WG_SIZE_0 or RD_WG_SIZE_0_0
|
||||
// 2014/06/10 17:00:51
|
||||
if (global_work[0] % local_work_size != 0)
|
||||
global_work[0] = (global_work[0] / local_work_size + 1) * local_work_size;
|
||||
|
||||
err = clEnqueueNDRangeKernel(cmd_queue, kernel2, 1, NULL, global_work,
|
||||
&local_work_size, 0, 0, 0);
|
||||
if (err != CL_SUCCESS) {
|
||||
printf("ERROR: clEnqueueNDRangeKernel()=>%d failed\n", err);
|
||||
return -1;
|
||||
}
|
||||
|
||||
membership_OCL = (int *)malloc(n_points * sizeof(int));
|
||||
}
|
||||
|
||||
void deallocateMemory() {
|
||||
clReleaseMemObject(d_feature);
|
||||
clReleaseMemObject(d_feature_swap);
|
||||
clReleaseMemObject(d_cluster);
|
||||
clReleaseMemObject(d_membership);
|
||||
free(membership_OCL);
|
||||
}
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
printf("WG size of kernel_swap = %d, WG size of kernel_kmeans = %d \n",
|
||||
BLOCK_SIZE, BLOCK_SIZE2);
|
||||
setup(argc, argv);
|
||||
shutdown();
|
||||
}
|
||||
|
||||
int kmeansOCL(float **feature, /* in: [npoints][nfeatures] */
|
||||
int n_features, int n_points, int n_clusters, int *membership,
|
||||
float **clusters, int *new_centers_len, float **new_centers) {
|
||||
|
||||
int delta = 0;
|
||||
int i, j, k;
|
||||
cl_int err = 0;
|
||||
|
||||
size_t global_work[3] = {n_points, 1, 1};
|
||||
|
||||
/// Ke Wang adjustable local group size 2013/08/07 10:37:33
|
||||
size_t local_work_size = BLOCK_SIZE2; // work group size is defined by
|
||||
// RD_WG_SIZE_1 or RD_WG_SIZE_1_0
|
||||
// 2014/06/10 17:00:41
|
||||
if (global_work[0] % local_work_size != 0)
|
||||
global_work[0] = (global_work[0] / local_work_size + 1) * local_work_size;
|
||||
|
||||
err = clEnqueueWriteBuffer(cmd_queue, d_cluster, 1, 0,
|
||||
n_clusters * n_features * sizeof(float),
|
||||
clusters[0], 0, 0, 0);
|
||||
if (err != CL_SUCCESS) {
|
||||
printf("ERROR: clEnqueueWriteBuffer d_cluster (size:%d) => %d\n", n_points,
|
||||
err);
|
||||
return -1;
|
||||
}
|
||||
|
||||
int size = 0;
|
||||
int offset = 0;
|
||||
|
||||
clSetKernelArg(kernel_s, 0, sizeof(void *), (void *)&d_feature_swap);
|
||||
clSetKernelArg(kernel_s, 1, sizeof(void *), (void *)&d_cluster);
|
||||
clSetKernelArg(kernel_s, 2, sizeof(void *), (void *)&d_membership);
|
||||
clSetKernelArg(kernel_s, 3, sizeof(cl_int), (void *)&n_points);
|
||||
clSetKernelArg(kernel_s, 4, sizeof(cl_int), (void *)&n_clusters);
|
||||
clSetKernelArg(kernel_s, 5, sizeof(cl_int), (void *)&n_features);
|
||||
clSetKernelArg(kernel_s, 6, sizeof(cl_int), (void *)&offset);
|
||||
clSetKernelArg(kernel_s, 7, sizeof(cl_int), (void *)&size);
|
||||
|
||||
err = clEnqueueNDRangeKernel(cmd_queue, kernel_s, 1, NULL, global_work,
|
||||
&local_work_size, 0, 0, 0);
|
||||
if (err != CL_SUCCESS) {
|
||||
printf("ERROR: clEnqueueNDRangeKernel()=>%d failed\n", err);
|
||||
return -1;
|
||||
}
|
||||
clFinish(cmd_queue);
|
||||
err = clEnqueueReadBuffer(cmd_queue, d_membership, 1, 0,
|
||||
n_points * sizeof(int), membership_OCL, 0, 0, 0);
|
||||
if (err != CL_SUCCESS) {
|
||||
printf("ERROR: Memcopy Out\n");
|
||||
return -1;
|
||||
}
|
||||
|
||||
delta = 0;
|
||||
for (i = 0; i < n_points; i++) {
|
||||
int cluster_id = membership_OCL[i];
|
||||
new_centers_len[cluster_id]++;
|
||||
if (membership_OCL[i] != membership[i]) {
|
||||
delta++;
|
||||
membership[i] = membership_OCL[i];
|
||||
}
|
||||
for (j = 0; j < n_features; j++) {
|
||||
new_centers[cluster_id][j] += feature[i][j];
|
||||
}
|
||||
}
|
||||
|
||||
return delta;
|
||||
}
|
338
benchmarks/new_opencl/kmeans/read_input.c
Executable file
338
benchmarks/new_opencl/kmeans/read_input.c
Executable file
|
@ -0,0 +1,338 @@
|
|||
/*****************************************************************************/
|
||||
/*IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. */
|
||||
/*By downloading, copying, installing or using the software you agree */
|
||||
/*to this license. If you do not agree to this license, do not download, */
|
||||
/*install, copy or use the software. */
|
||||
/* */
|
||||
/* */
|
||||
/*Copyright (c) 2005 Northwestern University */
|
||||
/*All rights reserved. */
|
||||
|
||||
/*Redistribution of the software in source and binary forms, */
|
||||
/*with or without modification, is permitted provided that the */
|
||||
/*following conditions are met: */
|
||||
/* */
|
||||
/*1 Redistributions of source code must retain the above copyright */
|
||||
/* notice, this list of conditions and the following disclaimer. */
|
||||
/* */
|
||||
/*2 Redistributions in binary form must reproduce the above copyright */
|
||||
/* notice, this list of conditions and the following disclaimer in the */
|
||||
/* documentation and/or other materials provided with the distribution.*/
|
||||
/* */
|
||||
/*3 Neither the name of Northwestern University nor the names of its */
|
||||
/* contributors may be used to endorse or promote products derived */
|
||||
/* from this software without specific prior written permission. */
|
||||
/* */
|
||||
/*THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS */
|
||||
/*IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED */
|
||||
/*TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT AND */
|
||||
/*FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL */
|
||||
/*NORTHWESTERN UNIVERSITY OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, */
|
||||
/*INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
|
||||
/*(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR */
|
||||
/*SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) */
|
||||
/*HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, */
|
||||
/*STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN */
|
||||
/*ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
|
||||
/*POSSIBILITY OF SUCH DAMAGE. */
|
||||
/******************************************************************************/
|
||||
|
||||
/*************************************************************************/
|
||||
/** File: example.c **/
|
||||
/** Description: Takes as input a file: **/
|
||||
/** ascii file: containing 1 data point per line **/
|
||||
/** binary file: first int is the number of objects **/
|
||||
/** 2nd int is the no. of features of each **/
|
||||
/** object **/
|
||||
/** This example performs a fuzzy c-means clustering **/
|
||||
/** on the data. Fuzzy clustering is performed using **/
|
||||
/** min to max clusters and the clustering that gets **/
|
||||
/** the best score according to a compactness and **/
|
||||
/** separation criterion are returned. **/
|
||||
/** Author: Wei-keng Liao **/
|
||||
/** ECE Department Northwestern University **/
|
||||
/** email: wkliao@ece.northwestern.edu **/
|
||||
/** **/
|
||||
/** Edited by: Jay Pisharath **/
|
||||
/** Northwestern University. **/
|
||||
/** **/
|
||||
/** ================================================================ **/
|
||||
/**
|
||||
* **/
|
||||
/** Edited by: Shuai Che, David Tarjan, Sang-Ha Lee
|
||||
* **/
|
||||
/** University of Virginia
|
||||
* **/
|
||||
/**
|
||||
* **/
|
||||
/** Description: No longer supports fuzzy c-means clustering;
|
||||
* **/
|
||||
/** only regular k-means clustering.
|
||||
* **/
|
||||
/** No longer performs "validity" function to
|
||||
* analyze **/
|
||||
/** compactness and separation crietria; instead
|
||||
* **/
|
||||
/** calculate root mean squared error.
|
||||
* **/
|
||||
/** **/
|
||||
/*************************************************************************/
|
||||
#define _CRT_SECURE_NO_DEPRECATE 1
|
||||
|
||||
#include "kmeans.h"
|
||||
#include <fcntl.h>
|
||||
#include <limits.h>
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <unistd.h>
|
||||
|
||||
extern double wtime(void);
|
||||
|
||||
/*---< usage() >------------------------------------------------------------*/
|
||||
void usage(char *argv0) {
|
||||
char *help = "\nUsage: %s [switches] -i filename\n\n"
|
||||
" -i filename :file containing data to be clustered\n"
|
||||
" -m max_nclusters :maximum number of clusters allowed "
|
||||
"[default=5]\n"
|
||||
" -n min_nclusters :minimum number of clusters allowed "
|
||||
"[default=5]\n"
|
||||
" -t threshold :threshold value "
|
||||
"[default=0.001]\n"
|
||||
" -l nloops :iteration for each number of clusters "
|
||||
"[default=1]\n"
|
||||
" -b :input file is in binary format\n"
|
||||
" -r :calculate RMSE "
|
||||
"[default=off]\n"
|
||||
" -o :output cluster center coordinates "
|
||||
"[default=off]\n";
|
||||
fprintf(stderr, help, argv0);
|
||||
exit(-1);
|
||||
}
|
||||
|
||||
/*---< main() >-------------------------------------------------------------*/
|
||||
int setup(int argc, char **argv) {
|
||||
int opt;
|
||||
extern char *optarg;
|
||||
char *filename = 0;
|
||||
float *buf;
|
||||
char line[1024];
|
||||
int isBinaryFile = 0;
|
||||
|
||||
float threshold = 0.001; /* default value */
|
||||
int max_nclusters = 5; /* default value */
|
||||
int min_nclusters = 5; /* default value */
|
||||
int best_nclusters = 0;
|
||||
int nfeatures = 0;
|
||||
int npoints = 0;
|
||||
float len;
|
||||
|
||||
float **features;
|
||||
float **cluster_centres = NULL;
|
||||
int i, j, index;
|
||||
int nloops = 1; /* default value */
|
||||
|
||||
int isRMSE = 0;
|
||||
float rmse;
|
||||
|
||||
int isOutput = 0;
|
||||
// float cluster_timing, io_timing;
|
||||
|
||||
/* obtain command line arguments and change appropriate options */
|
||||
while ((opt = getopt(argc, argv, "i:t:m:n:l:bro")) != EOF) {
|
||||
switch (opt) {
|
||||
case 'i':
|
||||
filename = optarg;
|
||||
break;
|
||||
case 'b':
|
||||
isBinaryFile = 1;
|
||||
break;
|
||||
case 't':
|
||||
threshold = atof(optarg);
|
||||
break;
|
||||
case 'm':
|
||||
max_nclusters = atoi(optarg);
|
||||
break;
|
||||
case 'n':
|
||||
min_nclusters = atoi(optarg);
|
||||
break;
|
||||
case 'r':
|
||||
isRMSE = 1;
|
||||
break;
|
||||
case 'o':
|
||||
isOutput = 1;
|
||||
break;
|
||||
case 'l':
|
||||
nloops = atoi(optarg);
|
||||
break;
|
||||
case '?':
|
||||
usage(argv[0]);
|
||||
break;
|
||||
default:
|
||||
usage(argv[0]);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/* ============== I/O begin ==============*/
|
||||
/* get nfeatures and npoints */
|
||||
// io_timing = omp_get_wtime();
|
||||
|
||||
/*if (isBinaryFile) { // Binary file input
|
||||
FILE *infile;
|
||||
if ((infile = fopen("100", "r")) == NULL) {
|
||||
fprintf(stderr, "Error: no such file (%s)\n", filename);
|
||||
exit(1);
|
||||
}
|
||||
fread(&npoints, 1, sizeof(int), infile);
|
||||
fread(&nfeatures, 1, sizeof(int), infile);
|
||||
|
||||
// allocate space for features[][] and read attributes of all objects
|
||||
buf = (float *)malloc(npoints * nfeatures * sizeof(float));
|
||||
features = (float **)malloc(npoints * sizeof(float *));
|
||||
features[0] = (float *)malloc(npoints * nfeatures * sizeof(float));
|
||||
for (i = 1; i < npoints; i++) {
|
||||
features[i] = features[i - 1] + nfeatures;
|
||||
}
|
||||
fread(buf, 1, npoints * nfeatures * sizeof(float), infile);
|
||||
fclose(infile);
|
||||
} else {
|
||||
FILE *infile;
|
||||
if ((infile = fopen("100", "r")) == NULL) {
|
||||
fprintf(stderr, "Error: no such file (%s)\n", filename);
|
||||
exit(1);
|
||||
}
|
||||
while (fgets(line, 1024, infile) != NULL)
|
||||
if (strtok(line, " \t\n") != 0) {
|
||||
npoints++;
|
||||
}
|
||||
rewind(infile);
|
||||
while (fgets(line, 1024, infile) != NULL) {
|
||||
if (strtok(line, " \t\n") != 0) {
|
||||
// ignore the id (first attribute): nfeatures = 1;
|
||||
while (strtok(NULL, " ,\t\n") != NULL)
|
||||
nfeatures++;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// allocate space for features[] and read attributes of all objects
|
||||
buf = (float *)malloc(npoints * nfeatures * sizeof(float));
|
||||
features = (float **)malloc(npoints * sizeof(float *));
|
||||
features[0] = (float *)malloc(npoints * nfeatures * sizeof(float));
|
||||
for (i = 1; i < npoints; i++)
|
||||
features[i] = features[i - 1] + nfeatures;
|
||||
rewind(infile);
|
||||
i = 0;
|
||||
while (fgets(line, 1024, infile) != NULL) {
|
||||
if (strtok(line, " \t\n") == NULL)
|
||||
continue;
|
||||
for (j = 0; j < nfeatures; j++) {
|
||||
buf[i] = atof(strtok(NULL, " ,\t\n"));
|
||||
i++;
|
||||
}
|
||||
}
|
||||
fclose(infile);
|
||||
}*/
|
||||
|
||||
npoints = 100;
|
||||
nfeatures = 100;
|
||||
buf = (float *)malloc(npoints * nfeatures * sizeof(float));
|
||||
features = (float **)malloc(npoints * sizeof(float *));
|
||||
features[0] = (float *)malloc(npoints * nfeatures * sizeof(float));
|
||||
for (i = 1; i < npoints; i++) {
|
||||
features[i] = features[i - 1] + nfeatures;
|
||||
}
|
||||
for (i = 0; i < npoints * nfeatures; ++i) {
|
||||
buf[i] = (i % 64);
|
||||
}
|
||||
|
||||
// io_timing = omp_get_wtime() - io_timing;
|
||||
|
||||
printf("\nI/O completed\n");
|
||||
printf("\nNumber of objects: %d\n", npoints);
|
||||
printf("Number of features: %d\n", nfeatures);
|
||||
/* ============== I/O end ==============*/
|
||||
|
||||
// error check for clusters
|
||||
if (npoints < min_nclusters) {
|
||||
printf("Error: min_nclusters(%d) > npoints(%d) -- cannot proceed\n",
|
||||
min_nclusters, npoints);
|
||||
exit(0);
|
||||
}
|
||||
|
||||
srand(7); /* seed for future random number generator */
|
||||
memcpy(
|
||||
features[0], buf,
|
||||
npoints * nfeatures *
|
||||
sizeof(
|
||||
float)); /* now features holds 2-dimensional array of features */
|
||||
free(buf);
|
||||
|
||||
/* ======================= core of the clustering ===================*/
|
||||
|
||||
// cluster_timing = omp_get_wtime(); /* Total clustering time */
|
||||
cluster_centres = NULL;
|
||||
index = cluster(npoints, /* number of data points */
|
||||
nfeatures, /* number of features for each point */
|
||||
features, /* array: [npoints][nfeatures] */
|
||||
min_nclusters, /* range of min to max number of clusters */
|
||||
max_nclusters, threshold, /* loop termination factor */
|
||||
&best_nclusters, /* return: number between min and max */
|
||||
&cluster_centres, /* return: [best_nclusters][nfeatures] */
|
||||
&rmse, /* Root Mean Squared Error */
|
||||
isRMSE, /* calculate RMSE */
|
||||
nloops); /* number of iteration for each number of clusters */
|
||||
|
||||
// cluster_timing = omp_get_wtime() - cluster_timing;
|
||||
|
||||
/* =============== Command Line Output =============== */
|
||||
|
||||
/* cluster center coordinates
|
||||
:displayed only for when k=1*/
|
||||
if ((min_nclusters == max_nclusters) && (isOutput == 1)) {
|
||||
printf("\n================= Centroid Coordinates =================\n");
|
||||
for (i = 0; i < max_nclusters; i++) {
|
||||
printf("%d:", i);
|
||||
for (j = 0; j < nfeatures; j++) {
|
||||
printf(" %.2f", cluster_centres[i][j]);
|
||||
}
|
||||
printf("\n\n");
|
||||
}
|
||||
}
|
||||
|
||||
len = (float)((max_nclusters - min_nclusters + 1) * nloops);
|
||||
|
||||
printf("Number of Iteration: %d\n", nloops);
|
||||
// printf("Time for I/O: %.5fsec\n", io_timing);
|
||||
// printf("Time for Entire Clustering: %.5fsec\n", cluster_timing);
|
||||
|
||||
if (min_nclusters != max_nclusters) {
|
||||
if (nloops != 1) { // range of k, multiple iteration
|
||||
// printf("Average Clustering Time: %fsec\n",
|
||||
// cluster_timing / len);
|
||||
printf("Best number of clusters is %d\n", best_nclusters);
|
||||
} else { // range of k, single iteration
|
||||
// printf("Average Clustering Time: %fsec\n",
|
||||
// cluster_timing / len);
|
||||
printf("Best number of clusters is %d\n", best_nclusters);
|
||||
}
|
||||
} else {
|
||||
if (nloops != 1) { // single k, multiple iteration
|
||||
// printf("Average Clustering Time: %.5fsec\n",
|
||||
// cluster_timing / nloops);
|
||||
if (isRMSE) // if calculated RMSE
|
||||
printf("Number of trials to approach the best RMSE of %.3f is %d\n",
|
||||
rmse, index + 1);
|
||||
} else { // single k, single iteration
|
||||
if (isRMSE) // if calculated RMSE
|
||||
printf("Root Mean Squared Error: %.3f\n", rmse);
|
||||
}
|
||||
}
|
||||
|
||||
/* free up memory */
|
||||
free(features[0]);
|
||||
free(features);
|
||||
return (0);
|
||||
}
|
94
benchmarks/new_opencl/kmeans/rmse.c
Executable file
94
benchmarks/new_opencl/kmeans/rmse.c
Executable file
|
@ -0,0 +1,94 @@
|
|||
/*************************************************************************/
|
||||
/** File: rmse.c **/
|
||||
/** Description: calculate root mean squared error of particular **/
|
||||
/** clustering. **/
|
||||
/** Author: Sang-Ha Lee **/
|
||||
/** University of Virginia. **/
|
||||
/** **/
|
||||
/** Note: euclid_dist_2() and find_nearest_point() adopted from **/
|
||||
/** Minebench code. **/
|
||||
/** **/
|
||||
/*************************************************************************/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <float.h>
|
||||
#include <math.h>
|
||||
|
||||
#include "kmeans.h"
|
||||
|
||||
extern double wtime(void);
|
||||
|
||||
/*----< euclid_dist_2() >----------------------------------------------------*/
|
||||
/* multi-dimensional spatial Euclid distance square */
|
||||
__inline
|
||||
float euclid_dist_2(float *pt1,
|
||||
float *pt2,
|
||||
int numdims)
|
||||
{
|
||||
int i;
|
||||
float ans=0.0;
|
||||
|
||||
for (i=0; i<numdims; i++)
|
||||
ans += (pt1[i]-pt2[i]) * (pt1[i]-pt2[i]);
|
||||
|
||||
return(ans);
|
||||
}
|
||||
|
||||
/*----< find_nearest_point() >-----------------------------------------------*/
|
||||
__inline
|
||||
int find_nearest_point(float *pt, /* [nfeatures] */
|
||||
int nfeatures,
|
||||
float **pts, /* [npts][nfeatures] */
|
||||
int npts)
|
||||
{
|
||||
int index, i;
|
||||
float max_dist=FLT_MAX;
|
||||
|
||||
/* find the cluster center id with min distance to pt */
|
||||
for (i=0; i<npts; i++) {
|
||||
float dist;
|
||||
dist = euclid_dist_2(pt, pts[i], nfeatures); /* no need square root */
|
||||
if (dist < max_dist) {
|
||||
max_dist = dist;
|
||||
index = i;
|
||||
}
|
||||
}
|
||||
return(index);
|
||||
}
|
||||
|
||||
/*----< rms_err(): calculates RMSE of clustering >-------------------------------------*/
|
||||
float rms_err (float **feature, /* [npoints][nfeatures] */
|
||||
int nfeatures,
|
||||
int npoints,
|
||||
float **cluster_centres, /* [nclusters][nfeatures] */
|
||||
int nclusters)
|
||||
{
|
||||
int i;
|
||||
int nearest_cluster_index; /* cluster center id with min distance to pt */
|
||||
float sum_euclid = 0.0; /* sum of Euclidean distance squares */
|
||||
float ret; /* return value */
|
||||
|
||||
/* calculate and sum the sqaure of euclidean distance*/
|
||||
#pragma omp parallel for \
|
||||
shared(feature,cluster_centres) \
|
||||
firstprivate(npoints,nfeatures,nclusters) \
|
||||
private(i, nearest_cluster_index) \
|
||||
schedule (static)
|
||||
for (i=0; i<npoints; i++) {
|
||||
nearest_cluster_index = find_nearest_point(feature[i],
|
||||
nfeatures,
|
||||
cluster_centres,
|
||||
nclusters);
|
||||
|
||||
sum_euclid += euclid_dist_2(feature[i],
|
||||
cluster_centres[nearest_cluster_index],
|
||||
nfeatures);
|
||||
|
||||
}
|
||||
/* divide by n, then take sqrt */
|
||||
ret = sqrt(sum_euclid / npoints);
|
||||
|
||||
return(ret);
|
||||
}
|
||||
|
|
@ -55,6 +55,28 @@ static cl_device_type device_type;
|
|||
static cl_device_id *device_list;
|
||||
static cl_int num_devices;
|
||||
|
||||
|
||||
static int read_kernel_file(const char* filename, uint8_t** data, size_t* size) {
|
||||
if (nullptr == filename || nullptr == data || 0 == size)
|
||||
return -1;
|
||||
|
||||
FILE* fp = fopen(filename, "r");
|
||||
if (NULL == fp) {
|
||||
fprintf(stderr, "Failed to load kernel.");
|
||||
return -1;
|
||||
}
|
||||
fseek(fp , 0 , SEEK_END);
|
||||
long fsize = ftell(fp);
|
||||
rewind(fp);
|
||||
|
||||
*data = (uint8_t*)malloc(fsize);
|
||||
*size = fread(*data, 1, fsize, fp);
|
||||
|
||||
fclose(fp);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int initialize(int use_gpu) {
|
||||
cl_int result;
|
||||
size_t size;
|
||||
|
@ -147,6 +169,11 @@ float *feature_d;
|
|||
float *clusters_d;
|
||||
float *center_d;
|
||||
|
||||
uint8_t* kernel_bin = NULL;
|
||||
size_t kernel_size = 0;
|
||||
cl_int binary_status = 0;
|
||||
|
||||
|
||||
int allocate(int n_points, int n_features, int n_clusters, float **feature) {
|
||||
/*int sourcesize = 1024 * 1024;
|
||||
char *source = (char *)calloc(sourcesize, sizeof(char));
|
||||
|
@ -170,11 +197,18 @@ int allocate(int n_points, int n_features, int n_clusters, float **feature) {
|
|||
if (initialize(use_gpu))
|
||||
return -1;
|
||||
|
||||
// Load Kernel
|
||||
if (read_kernel_file("kernel.pocl", &kernel_bin, &kernel_size)) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
// compile kernel
|
||||
cl_int err = 0;
|
||||
//const char *slist[2] = {source, 0};
|
||||
//cl_program prog = clCreateProgramWithSource(context, 1, slist, NULL, &err);
|
||||
cl_program prog = clCreateProgramWithBuiltInKernels(context, 1, device_list, "kmeans_kernel_c;kmeans_swap", &err);
|
||||
cl_program prog = clCreateProgramWithBinary(
|
||||
context, 1, device_list, &kernel_size, &kernel_bin, &binary_status, &err);
|
||||
// cl_program prog = clCreateProgramWithBuiltInKernels(context, 1, device_list, "kmeans_kernel_c;kmeans_swap", &err);
|
||||
if (err != CL_SUCCESS) {
|
||||
printf("ERROR: clCreateProgramWithSource() => %d\n", err);
|
||||
return -1;
|
||||
|
@ -280,6 +314,7 @@ void deallocateMemory() {
|
|||
clReleaseMemObject(d_feature_swap);
|
||||
clReleaseMemObject(d_cluster);
|
||||
clReleaseMemObject(d_membership);
|
||||
if (kernel_bin) free(kernel_bin);
|
||||
free(membership_OCL);
|
||||
}
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue