vortex/tests/regression/mstress/main.cpp
2024-09-07 03:42:46 -07:00

253 lines
No EOL
7.6 KiB
C++

#include <iostream>
#include <unistd.h>
#include <string.h>
#include <vortex.h>
#include "common.h"
#include <assert.h>
#include <limits>
#include <math.h>
#include <vector>
#define RT_CHECK(_expr) \
do { \
int _ret = _expr; \
if (0 == _ret) \
break; \
printf("Error: '%s' returned %d!\n", #_expr, (int)_ret); \
cleanup(); \
exit(-1); \
} while (false)
///////////////////////////////////////////////////////////////////////////////
union Float_t {
float f;
int i;
struct {
uint32_t man : 23;
uint32_t exp : 8;
uint32_t sign : 1;
} parts;
};
inline float fround(float x, int32_t precision = 8) {
auto power_of_10 = std::pow(10, precision);
return std::round(x * power_of_10) / power_of_10;
}
inline bool almost_equal_eps(float a, float b, int ulp = 128) {
auto eps = std::numeric_limits<float>::epsilon() * (std::max(fabs(a), fabs(b)) * ulp);
auto d = fabs(a - b);
if (d > eps) {
std::cout << "*** almost_equal_eps: d=" << d << ", eps=" << eps << std::endl;
return false;
}
return true;
}
inline bool almost_equal_ulp(float a, float b, int32_t ulp = 6) {
Float_t fa{a}, fb{b};
auto d = std::abs(fa.i - fb.i);
if (d > ulp) {
std::cout << "*** almost_equal_ulp: a=" << a << ", b=" << b << ", ulp=" << d << ", ia=" << std::hex << fa.i << ", ib=" << fb.i << std::endl;
return false;
}
return true;
}
inline bool almost_equal(float a, float b) {
if (a == b)
return true;
/*if (almost_equal_eps(a, b))
return true;*/
return almost_equal_ulp(a, b);
}
///////////////////////////////////////////////////////////////////////////////
const char* kernel_file = "kernel.vxbin";
uint32_t count = 0;
vx_device_h device = nullptr;
vx_buffer_h src0_buffer = nullptr;
vx_buffer_h src1_buffer = nullptr;
vx_buffer_h dst_buffer = nullptr;
vx_buffer_h krnl_buffer = nullptr;
vx_buffer_h args_buffer = nullptr;
kernel_arg_t kernel_arg = {};
static void show_usage() {
std::cout << "Vortex Test." << std::endl;
std::cout << "Usage: [-k: kernel] [-n words] [-h: help]" << std::endl;
}
static void parse_args(int argc, char **argv) {
int c;
while ((c = getopt(argc, argv, "n:k:h")) != -1) {
switch (c) {
case 'n':
count = atoi(optarg);
break;
case 'k':
kernel_file = optarg;
break;
case 'h':
show_usage();
exit(0);
break;
default:
show_usage();
exit(-1);
}
}
}
void cleanup() {
if (device) {
vx_mem_free(src0_buffer);
vx_mem_free(src1_buffer);
vx_mem_free(dst_buffer);
vx_mem_free(krnl_buffer);
vx_mem_free(args_buffer);
vx_dev_close(device);
}
}
void gen_src_data(std::vector<float>& test_data,
std::vector<uint32_t>& addr_table,
uint32_t num_points,
uint32_t num_addrs) {
test_data.resize(num_points);
addr_table.resize(num_addrs);
for (uint32_t i = 0; i < num_points; ++i) {
float r = static_cast<float>(std::rand()) / RAND_MAX;
test_data[i] = r;
}
for (uint32_t i = 0; i < num_addrs; ++i) {
float r = static_cast<float>(std::rand()) / RAND_MAX;
uint32_t index = static_cast<uint32_t>(r * num_points);
assert(index < num_points);
addr_table[i] = index;
}
}
int main(int argc, char *argv[]) {
// parse command arguments
parse_args(argc, argv);
if (count == 0) {
count = 1;
}
std::srand(50);
// open device connection
std::cout << "open device connection" << std::endl;
RT_CHECK(vx_dev_open(&device));
uint64_t num_cores, num_warps, num_threads;
RT_CHECK(vx_dev_caps(device, VX_CAPS_NUM_CORES, &num_cores));
RT_CHECK(vx_dev_caps(device, VX_CAPS_NUM_WARPS, &num_warps));
RT_CHECK(vx_dev_caps(device, VX_CAPS_NUM_THREADS, &num_threads));
uint32_t total_threads = num_cores * num_warps * num_threads;
uint32_t num_points = count * total_threads;
uint32_t num_addrs = num_points + NUM_LOADS - 1;
uint32_t addr_buf_size = num_addrs * sizeof(int32_t);
uint32_t src_buf_size = num_points * sizeof(int32_t);
uint32_t dst_buf_size = num_points * sizeof(int32_t);
std::cout << "number of points: " << num_points << std::endl;
std::cout << "addr buffer size: " << addr_buf_size << " bytes" << std::endl;
std::cout << "src buffer size: " << src_buf_size << " bytes" << std::endl;
std::cout << "dst buffer size: " << dst_buf_size << " bytes" << std::endl;
kernel_arg.num_tasks = total_threads;
kernel_arg.stride = count;
// allocate device memory
std::cout << "allocate device memory" << std::endl;
RT_CHECK(vx_mem_alloc(device, addr_buf_size, VX_MEM_READ, &src0_buffer));
RT_CHECK(vx_mem_address(src0_buffer, &kernel_arg.src0_addr));
RT_CHECK(vx_mem_alloc(device, src_buf_size, VX_MEM_READ, &src1_buffer));
RT_CHECK(vx_mem_address(src1_buffer, &kernel_arg.src1_addr));
RT_CHECK(vx_mem_alloc(device, dst_buf_size, VX_MEM_WRITE, &dst_buffer));
RT_CHECK(vx_mem_address(dst_buffer, &kernel_arg.dst_addr));
std::cout << "dev_addr=0x" << std::hex << kernel_arg.src0_addr << std::endl;
std::cout << "dev_src=0x" << std::hex << kernel_arg.src1_addr << std::endl;
std::cout << "dev_dst=0x" << std::hex << kernel_arg.dst_addr << std::endl;
// allocate host buffers
std::cout << "allocate host buffers" << std::endl;
std::vector<uint32_t> h_addr;
std::vector<float> h_src;
std::vector<float> h_dst(num_points);
gen_src_data(h_src, h_addr, num_points, num_addrs);
// upload source buffer0
std::cout << "upload address buffer" << std::endl;
RT_CHECK(vx_copy_to_dev(src0_buffer, h_addr.data(), 0, addr_buf_size));
// upload source buffer1
std::cout << "upload source buffer" << std::endl;
RT_CHECK(vx_copy_to_dev(src1_buffer, h_src.data(), 0, src_buf_size));
// upload program
std::cout << "upload program" << std::endl;
RT_CHECK(vx_upload_kernel_file(device, kernel_file, &krnl_buffer));
// upload kernel argument
std::cout << "upload kernel argument" << std::endl;
RT_CHECK(vx_upload_bytes(device, &kernel_arg, sizeof(kernel_arg_t), &args_buffer));
// start device
std::cout << "start device" << std::endl;
RT_CHECK(vx_start(device, krnl_buffer, args_buffer));
// wait for completion
std::cout << "wait for completion" << std::endl;
RT_CHECK(vx_ready_wait(device, VX_MAX_TIMEOUT));
// download destination buffer
std::cout << "download destination buffer" << std::endl;
RT_CHECK(vx_copy_from_dev(h_dst.data(), dst_buffer, 0, dst_buf_size));
// verify result
std::cout << "verify result" << std::endl;
int errors = 0;
for (uint32_t i = 0; i < num_points; ++i) {
float ref = 0.0f;
for (uint32_t j = 0; j < NUM_LOADS; ++j) {
uint32_t addr = i + j;
uint32_t index = h_addr[addr];
float value = h_src[index];
//printf("*** [%d] addr=%d, index=%d, value=%f\n", i, addr, index, value);
ref *= value;
}
float cur = h_dst[i];
if (!almost_equal(cur, ref)) {
std::cout << "error at result #" << std::dec << i
<< ": actual " << cur << ", expected " << ref << std::endl;
++errors;
}
}
// cleanup
std::cout << "cleanup" << std::endl;
cleanup();
if (errors != 0) {
std::cout << "Found " << std::dec << errors << " errors!" << std::endl;
std::cout << "FAILED!" << std::endl;
return 1;
}
std::cout << "PASSED!" << std::endl;
return 0;
}