vortex/tests/regression/tex/main.cpp
2022-01-28 21:57:16 -05:00

274 lines
No EOL
8.5 KiB
C++

#include <iostream>
#include <vector>
#include <unistd.h>
#include <string.h>
#include <chrono>
#include <cmath>
#include <assert.h>
#include <vortex.h>
#include "common.h"
#include "utils.h"
using namespace cocogfx;
#define RT_CHECK(_expr) \
do { \
int _ret = _expr; \
if (0 == _ret) \
break; \
printf("Error: '%s' returned %d!\n", #_expr, (int)_ret); \
cleanup(); \
exit(-1); \
} while (false)
///////////////////////////////////////////////////////////////////////////////
const char* kernel_file = "kernel.bin";
const char* input_file = "palette64.png";
const char* output_file = "output.png";
int wrap = 0;
int filter = 0; // 0-> point, 1->bilinear, 2->trilinear
float scale = 1.0f;
int format = 0;
bool use_sw = false;
ePixelFormat eformat = FORMAT_A8R8G8B8;
vx_device_h device = nullptr;
vx_buffer_h buffer = nullptr;
kernel_arg_t kernel_arg;
static void show_usage() {
std::cout << "Vortex Texture Test." << std::endl;
std::cout << "Usage: [-k: kernel] [-i image] [-o image] [-s scale] [-w wrap] [-f format] [-g filter] [-z no_hw] [-h: help]" << std::endl;
}
static void parse_args(int argc, char **argv) {
int c;
while ((c = getopt(argc, argv, "zi:o:k:w:f:g:s:h?")) != -1) {
switch (c) {
case 'i':
input_file = optarg;
break;
case 'o':
output_file = optarg;
break;
case 's':
scale = std::stof(optarg, NULL);
break;
case 'w':
wrap = std::atoi(optarg);
break;
case 'z':
use_sw = true;
break;
case 'f': {
format = std::atoi(optarg);
switch (format) {
case 0: eformat = FORMAT_A8R8G8B8; break;
case 1: eformat = FORMAT_R5G6B5; break;
case 2: eformat = FORMAT_A1R5G5B5; break;
case 3: eformat = FORMAT_A4R4G4B4; break;
case 4: eformat = FORMAT_A8L8; break;
case 5: eformat = FORMAT_L8; break;
case 6: eformat = FORMAT_A8; break;
default:
std::cout << "Error: invalid format: " << format << std::endl;
exit(1);
}
} break;
case 'g':
filter = std::atoi(optarg);
break;
case 'k':
kernel_file = optarg;
break;
case 'h':
case '?': {
show_usage();
exit(0);
} break;
default:
show_usage();
exit(-1);
}
}
}
void cleanup() {
if (buffer) {
vx_buf_free(buffer);
}
if (device) {
vx_mem_free(device, kernel_arg.src_addr);
vx_mem_free(device, kernel_arg.dst_addr);
vx_dev_close(device);
}
}
int run_test(const kernel_arg_t& kernel_arg,
uint32_t buf_size,
uint32_t width,
uint32_t height,
uint32_t bpp) {
(void)bpp;
auto time_start = std::chrono::high_resolution_clock::now();
// start device
std::cout << "start device" << std::endl;
RT_CHECK(vx_start(device));
// wait for completion
std::cout << "wait for completion" << std::endl;
RT_CHECK(vx_ready_wait(device, MAX_TIMEOUT));
auto time_end = std::chrono::high_resolution_clock::now();
double elapsed = std::chrono::duration_cast<std::chrono::milliseconds>(time_end - time_start).count();
printf("Elapsed time: %lg ms\n", elapsed);
// download destination buffer
std::cout << "download destination buffer" << std::endl;
RT_CHECK(vx_copy_from_dev(buffer, kernel_arg.dst_addr, buf_size, 0));
std::vector<uint8_t> dst_pixels(buf_size);
auto buf_ptr = (uint8_t*)vx_host_ptr(buffer);
for (uint32_t i = 0; i < buf_size; ++i) {
dst_pixels[i] = buf_ptr[i];
}
// save output image
std::cout << "save output image" << std::endl;
//dump_image(dst_pixels, width, height, bpp);
RT_CHECK(SaveImage(output_file, FORMAT_A8R8G8B8, dst_pixels, width, height));
return 0;
}
int main(int argc, char *argv[]) {
std::vector<uint8_t> src_pixels;
std::vector<uint32_t> mip_offsets;
uint32_t src_width;
uint32_t src_height;
// parse command arguments
parse_args(argc, argv);
{
std::vector<uint8_t> staging;
RT_CHECK(LoadImage(input_file, eformat, staging, &src_width, &src_height));
uint32_t src_bpp = GetInfo(eformat).BytePerPixel;
//dump_image(staging, src_width, src_height, src_bpp);
RT_CHECK(GenerateMipmaps(src_pixels, mip_offsets, staging, eformat, src_width, src_height, src_width * src_bpp));
}
// check power of two support
if (!ispow2(src_width) || !ispow2(src_height)) {
std::cout << "Error: only power of two textures supported: width=" << src_width << ", heigth=" << src_height << std::endl;
return -1;
}
uint32_t src_logwidth = log2ceil(src_width);
uint32_t src_logheight = log2ceil(src_height);
uint32_t src_bufsize = src_pixels.size();
uint32_t dst_width = (uint32_t)(src_width * scale);
uint32_t dst_height = (uint32_t)(src_height * scale);
uint32_t dst_bpp = 4;
uint32_t dst_bufsize = dst_bpp * dst_width * dst_height;
// open device connection
std::cout << "open device connection" << std::endl;
RT_CHECK(vx_dev_open(&device));
uint64_t max_cores, max_warps, max_threads;
RT_CHECK(vx_dev_caps(device, VX_CAPS_MAX_CORES, &max_cores));
RT_CHECK(vx_dev_caps(device, VX_CAPS_MAX_WARPS, &max_warps));
RT_CHECK(vx_dev_caps(device, VX_CAPS_MAX_THREADS, &max_threads));
uint32_t num_tasks = max_cores * max_warps * max_threads;
std::cout << "number of tasks: " << std::dec << num_tasks << std::endl;
std::cout << "source buffer: width=" << src_width << ", heigth=" << src_height << ", size=" << src_bufsize << " bytes" << std::endl;
std::cout << "destination buffer: width=" << dst_width << ", heigth=" << dst_height << ", size=" << dst_bufsize << " bytes" << std::endl;
// upload program
std::cout << "upload program" << std::endl;
RT_CHECK(vx_upload_kernel_file(device, kernel_file));
// allocate device memory
std::cout << "allocate device memory" << std::endl;
uint64_t src_addr, dst_addr;
RT_CHECK(vx_mem_alloc(device, src_bufsize, &src_addr));
RT_CHECK(vx_mem_alloc(device, dst_bufsize, &dst_addr));
std::cout << "src_addr=0x" << std::hex << src_addr << std::endl;
std::cout << "dst_addr=0x" << std::hex << dst_addr << std::endl;
// allocate staging shared memory
std::cout << "allocate shared memory" << std::endl;
uint32_t alloc_size = std::max<uint32_t>(sizeof(kernel_arg_t),
std::max<uint32_t>(src_bufsize, dst_bufsize));
RT_CHECK(vx_buf_alloc(device, alloc_size, &buffer));
// upload kernel argument
std::cout << "upload kernel argument" << std::endl;
{
kernel_arg.use_sw = use_sw;
kernel_arg.num_tasks = std::min<uint32_t>(num_tasks, dst_height);
kernel_arg.format = format;
kernel_arg.filter = filter;
kernel_arg.wrapu = wrap;
kernel_arg.wrapv = wrap;
kernel_arg.src_logwidth = src_logwidth;
kernel_arg.src_logheight = src_logheight;
kernel_arg.src_addr = src_addr;
for (uint32_t i = 0; i < mip_offsets.size(); ++i) {
assert(i < TEX_LOD_MAX);
kernel_arg.mip_offs[i] = mip_offsets.at(i);
}
kernel_arg.dst_width = dst_width;
kernel_arg.dst_height = dst_height;
kernel_arg.dst_stride = dst_bpp;
kernel_arg.dst_pitch = dst_bpp * dst_width;
kernel_arg.dst_addr = dst_addr;
auto buf_ptr = (uint8_t*)vx_host_ptr(buffer);
memcpy(buf_ptr, &kernel_arg, sizeof(kernel_arg_t));
RT_CHECK(vx_copy_to_dev(buffer, KERNEL_ARG_DEV_MEM_ADDR, sizeof(kernel_arg_t), 0));
}
// upload source buffer
std::cout << "upload source buffer" << std::endl;
{
auto buf_ptr = (uint8_t*)vx_host_ptr(buffer);
for (uint32_t i = 0; i < src_bufsize; ++i) {
buf_ptr[i] = src_pixels[i];
}
RT_CHECK(vx_copy_to_dev(buffer, kernel_arg.src_addr, src_bufsize, 0));
}
// clear destination buffer
std::cout << "clear destination buffer" << std::endl;
{
auto buf_ptr = (uint32_t*)vx_host_ptr(buffer);
for (uint32_t i = 0; i < (dst_bufsize/4); ++i) {
buf_ptr[i] = 0xdeadbeef;
}
RT_CHECK(vx_copy_to_dev(buffer, kernel_arg.dst_addr, dst_bufsize, 0));
}
// run tests
std::cout << "run tests" << std::endl;
RT_CHECK(run_test(kernel_arg, dst_bufsize, dst_width, dst_height, dst_bpp));
// cleanup
std::cout << "cleanup" << std::endl;
cleanup();
std::cout << "PASSED!" << std::endl;
return 0;
}