vortex/tests/regression/conv3x/main.cpp
2025-06-06 14:10:12 -07:00

277 lines
No EOL
7.6 KiB
C++

#include <iostream>
#include <unistd.h>
#include <string.h>
#include <vector>
#include <chrono>
#include <vortex.h>
#include <cmath>
#include "common.h"
#define FLOAT_ULP 6
#define RT_CHECK(_expr) \
do { \
int _ret = _expr; \
if (0 == _ret) \
break; \
printf("Error: '%s' returned %d!\n", #_expr, (int)_ret); \
cleanup(); \
exit(-1); \
} while (false)
///////////////////////////////////////////////////////////////////////////////
template <typename Type>
class Comparator {};
template <>
class Comparator<int> {
public:
static const char* type_str() {
return "integer";
}
static int generate() {
return rand();
}
static bool compare(int a, int b, int index, int errors) {
if (a != b) {
if (errors < 100) {
printf("*** error: [%d] expected=%d, actual=%d\n", index, b, a);
}
return false;
}
return true;
}
};
template <>
class Comparator<float> {
public:
static const char* type_str() {
return "float";
}
static float generate() {
return static_cast<float>(rand()) / RAND_MAX;
}
static bool compare(float a, float b, int index, int errors) {
union fi_t { float f; int32_t i; };
fi_t fa, fb;
fa.f = a;
fb.f = b;
auto d = std::abs(fa.i - fb.i);
if (d > FLOAT_ULP) {
if (errors < 100) {
printf("*** error: [%d] expected=%f, actual=%f\n", index, b, a);
}
return false;
}
return true;
}
};
static void convolution_cpu(TYPE *O, TYPE *I, TYPE *W, int32_t width, int32_t height) {
int paddedWidth = width + 2;
for (int32_t y = 0; y < height; ++y) {
for (int32_t x = 0; x < width; ++x) {
int paddedY = y + 1;
int paddedX = x + 1;
TYPE sum(0);
for (int32_t ky = -1; ky <= 1; ++ky) {
for (int32_t kx = -1; kx <= 1; ++kx) {
int32_t iy = paddedY + ky;
int32_t ix = paddedX + kx;
TYPE value = I[iy * paddedWidth + ix];
TYPE weight = W[(ky + 1) * 3 + (kx + 1)];
sum += value * weight;
}
}
O[y * width + x] = sum;
}
}
}
const char* kernel_file = "kernel.vxbin";
int size = 32;
bool use_lmem = false;
vx_device_h device = nullptr;
vx_buffer_h I_buffer = nullptr;
vx_buffer_h W_buffer = nullptr;
vx_buffer_h O_buffer = nullptr;
vx_buffer_h krnl_buffer = nullptr;
vx_buffer_h args_buffer = nullptr;
kernel_arg_t kernel_arg = {};
static void show_usage() {
std::cout << "Vortex Test." << std::endl;
std::cout << "Usage: [-k kernel] [-l: local memory] [-n size] [-h|?: help]" << std::endl;
}
static void parse_args(int argc, char **argv) {
int c;
while ((c = getopt(argc, argv, "n:k:lh")) != -1) {
switch (c) {
case 'n':
size = atoi(optarg);
break;
case 'l':
use_lmem = true;
break;
case 'k':
kernel_file = optarg;
break;
case 'h':
show_usage();
exit(0);
break;
default:
show_usage();
exit(-1);
}
}
}
void cleanup() {
if (device) {
vx_mem_free(I_buffer);
vx_mem_free(W_buffer);
vx_mem_free(O_buffer);
vx_mem_free(krnl_buffer);
vx_mem_free(args_buffer);
vx_dev_close(device);
}
}
int main(int argc, char *argv[]) {
// parse command arguments
parse_args(argc, argv);
std::srand(50);
// open device connection
std::cout << "open device connection" << std::endl;
RT_CHECK(vx_dev_open(&device));
std::cout << "data type: " << Comparator<TYPE>::type_str() << std::endl;
std::cout << "matrix size: " << size << "x" << size << std::endl;
kernel_arg.grid_dim[0] = size;
kernel_arg.grid_dim[1] = size;
kernel_arg.width = size;
kernel_arg.use_lmem = use_lmem;
uint32_t o_points = size * size;
uint32_t i_points = (size+2) * (size+2);
uint32_t w_points = 3 * 3;
// allocate device memory
std::cout << "allocate device memory" << std::endl;
size_t i_nbytes = i_points * sizeof(TYPE);
size_t w_nbytes = w_points * sizeof(TYPE);
size_t o_nbytes = o_points * sizeof(TYPE);
RT_CHECK(vx_mem_alloc(device, i_nbytes, VX_MEM_READ, &I_buffer));
RT_CHECK(vx_mem_address(I_buffer, &kernel_arg.I_addr));
RT_CHECK(vx_mem_alloc(device, w_nbytes, VX_MEM_READ, &W_buffer));
RT_CHECK(vx_mem_address(W_buffer, &kernel_arg.W_addr));
RT_CHECK(vx_mem_alloc(device, o_nbytes, VX_MEM_WRITE, &O_buffer));
RT_CHECK(vx_mem_address(O_buffer, &kernel_arg.O_addr));
if (use_lmem) {
uint64_t dev_local_mem_size;
RT_CHECK(vx_dev_caps(device, VX_CAPS_LOCAL_MEM_SIZE, &dev_local_mem_size));
if (w_nbytes > dev_local_mem_size) {
std::cout << "Error: Not enough local memory: needed=" << w_nbytes << ", available=" << dev_local_mem_size << std::endl;
cleanup();
exit(1);
}
}
std::cout << "dev_argI=0x" << std::hex << kernel_arg.I_addr << std::endl;
std::cout << "dev_argW=0x" << std::hex << kernel_arg.W_addr << std::endl;
std::cout << "dev_argO=0x" << std::hex << kernel_arg.O_addr << std::endl;
// Generate input values
std::vector<TYPE> h_I(i_points);
std::vector<TYPE> h_W(w_points);
std::vector<TYPE> h_O(o_points);
for (int32_t y = -1; y < size+1; ++y) {
for (int32_t x = -1; x < size+1; ++x) {
if (x >= 0 && x < size && y >= 0 && y < size) {
h_I[(y+1) * (size+2) + (x+1)] = static_cast<TYPE>(rand()) / RAND_MAX;
} else {
h_I[(y+1) * (size+2) + (x+1)] = 0;
}
}
}
for (uint32_t i = 0; i < w_points; ++i) {
h_W[i] = static_cast<TYPE>(rand()) / RAND_MAX;
}
// upload input buffer
{
std::cout << "upload source buffer" << std::endl;
RT_CHECK(vx_copy_to_dev(I_buffer, h_I.data(), 0, i_nbytes));
}
// upload weight buffer
{
std::cout << "upload weight buffer" << std::endl;
RT_CHECK(vx_copy_to_dev(W_buffer, h_W.data(), 0, w_nbytes));
}
// upload program
std::cout << "upload program" << std::endl;
RT_CHECK(vx_upload_kernel_file(device, kernel_file, &krnl_buffer));
// upload kernel argument
std::cout << "upload kernel argument" << std::endl;
RT_CHECK(vx_upload_bytes(device, &kernel_arg, sizeof(kernel_arg_t), &args_buffer));
auto time_start = std::chrono::high_resolution_clock::now();
// start device
std::cout << "start device" << std::endl;
RT_CHECK(vx_start(device, krnl_buffer, args_buffer));
// wait for completion
std::cout << "wait for completion" << std::endl;
RT_CHECK(vx_ready_wait(device, VX_MAX_TIMEOUT));
auto time_end = std::chrono::high_resolution_clock::now();
double elapsed = std::chrono::duration_cast<std::chrono::milliseconds>(time_end - time_start).count();
printf("Elapsed time: %lg ms\n", elapsed);
// download destination buffer
std::cout << "download destination buffer" << std::endl;
RT_CHECK(vx_copy_from_dev(h_O.data(), O_buffer, 0, o_nbytes));
// verify result
std::cout << "verify result" << std::endl;
int errors = 0;
{
std::vector<TYPE> h_ref(o_points);
convolution_cpu(h_ref.data(), h_I.data(), h_W.data(), size, size);
for (uint32_t i = 0; i < h_ref.size(); ++i) {
auto ref = h_ref[i];
auto cur = h_O[i];
if (!Comparator<TYPE>::compare(cur, ref, i, errors)) {
++errors;
}
}
}
// cleanup
std::cout << "cleanup" << std::endl;
cleanup();
if (errors != 0) {
std::cout << "Found " << std::dec << errors << " errors!" << std::endl;
std::cout << "FAILED!" << std::endl;
return errors;
}
std::cout << "PASSED!" << std::endl;
return 0;
}