3.5 KiB
Skyler MacDougall
Homework 4: Due 2/10/2020
-
-
Determine the noise gain (
K_n
) for the circuit.K_n={1\over \beta};\ \beta={R_i\over R_i+R_f}\ K_n={68k\Omega+2k\Omega\over2k\Omega}\ \overline{\underline{|K_n=35|}}
-
Use the result to calculate the exact signal gain at DC and low frequencies if
A_o=10^5
.K_n={1\over \beta};\ \beta={1\over 35}\ A_{CL}={A_o\over1+A_o\beta}={10^5\over1+(10^5)({1\over35})}\ \overline{\underline{|A_{CL}=3.9998\approx4|}}
-
-
-
Determine the noise gain (
K_n
) for the circuit.K_n={1\over\beta};\ \beta={R_i\over R_i+R_f};\ R_i=12k\Omega||24k\Omega=8k\Omega\ K_n={8k\Omega+120k\Omega\over8k\Omega}\ \overline{\underline{|K_n=16|}}
-
Use the result to calculate the exact gain factors for the two signals if
A_o=5\times 10^4
.K_n={1\over \beta};\ \beta={1\over 16}\ A_{CL}={A_o\over1+A_o\beta}={5\times10^4\over1+(5\times10^4)({1\over16})}\ \overline{\underline{|A_{CL}=15.9949\approx16|}}
-
-
For the circuit shown in problem 9, assume the following:
V_{io}=1.2mV\ I_b=60nA\ I_{io}=8nA
-
Determine the magnitude of the output DC voltage
|V_{o1}|
produced by the input offset voltage.V_{o1}=V_{io}(\alpha);\ \alpha={R_f\over R_i+R_f}={34\over35}\ V_{o1}=1.2mV({34\over35})\ \overline{\underline{|V_{o1}=1.6mV|}}
-
With
R_c=0
determine the magnitude of the output dc voltage|V_{o2}|
produced by the input bias currents.V_{o2}=R_c(\alpha)i_b^+-R_f(I_b^2);\ R_c=0\ i_{io}=i_b^+-i_b^-;\ i_b={i_b^++i_b^-\over2}\ 8nA=i_b^+-i_b^-;\ 120nA=i_b^++i_b^-\ i_b^+=64nA;\ i_b^-=56nA\[16pt] V_{o2}=0-68k\Omega(56nA)\ \overline{\underline{|V_{o2}=-3.808mV|}}
-
Determine the optimum value of
R_c
.R_{c_{ideal}}=2k\Omega||68k\Omega\ \overline{\underline{|R_{c_{ideal}}=1.94k\Omega|}}
-
Given your new value for
R_c
, find|V_{o2}|
.V_{o2}=R_c(\alpha)i_b^+-R_f(I_b^2);\ R_c=0;\ i_b^+=64nA;\ i_b^-=56nA\ V_{o2}=1.94k\Omega({34\over35})(64nA)-3.808mV\ \overline{\underline{|V_{o2}=-3.688V|}}
-
-
An op-amp is used at DC and very low frequencies. A closed loop gain of 200 is required. Specifications indicate that the error due to finite open loop gain cannot exceed 0.1%. Determine the minimum value of the DC open loop gain required.
I am unsure how to do this problem. It feels like there is not enough information do this problem, but I can’t seem to wrap my head around it.
-
Assume the design of problem 25, with the following additional parameters:
DC\ output\ due\ to\ input\ offset\ voltage \le100mV\ DC\ output\ due\ to\ input\ offset\ current \le5mV\
- Determine the maximum value of input offset voltage allowed for the op-amp.
- When an op-amp is selected to meet the requirements for the above, assume that
I_{io}=12\mu A
. Calculate the maximum value ofR_f
permitted, assuming that a compensating resistors will be used.
Due to this question being directly related to question 25, I cannot do this question either.