cve2/rtl/cve2_branch_predict.sv
christian-herber-nxp 932db14619
Rename all modules to cve2 (#25)
* rename files and modules to cve2

Signed-off-by: Szymon Bieganski <szymon.bieganski@oss.nxp.com>

* updated tb files

Signed-off-by: Szymon Bieganski <szymon.bieganski@oss.nxp.com>

* remaining references to ibex: gitignore, examples, etc.

Signed-off-by: Szymon Bieganski <szymon.bieganski@oss.nxp.com>

Signed-off-by: Szymon Bieganski <szymon.bieganski@oss.nxp.com>
Co-authored-by: Szymon Bieganski <szymon.bieganski@oss.nxp.com>
2023-01-05 10:27:24 +01:00

100 lines
3.3 KiB
Systemverilog

// Copyright lowRISC contributors.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
/**
* Branch Predictor
*
* This implements static branch prediction. It takes an instruction and its PC and determines if
* it's a branch or a jump and calculates its target. For jumps it will always predict taken. For
* branches it will predict taken if the PC offset is negative.
*
* This handles both compressed and uncompressed instructions. Compressed instructions must be in
* the lower 16-bits of instr.
*
* The predictor is entirely combinational but takes clk/rst_n signals for use by assertions.
*/
`include "prim_assert.sv"
module cve2_branch_predict (
input logic clk_i,
input logic rst_ni,
// Instruction from fetch stage
input logic [31:0] fetch_rdata_i,
input logic [31:0] fetch_pc_i,
input logic fetch_valid_i,
// Prediction for supplied instruction
output logic predict_branch_taken_o,
output logic [31:0] predict_branch_pc_o
);
import cve2_pkg::*;
logic [31:0] imm_j_type;
logic [31:0] imm_b_type;
logic [31:0] imm_cj_type;
logic [31:0] imm_cb_type;
logic [31:0] branch_imm;
logic [31:0] instr;
logic instr_j;
logic instr_b;
logic instr_cj;
logic instr_cb;
logic instr_b_taken;
// Provide short internal name for fetch_rdata_i due to reduce line wrapping
assign instr = fetch_rdata_i;
// Extract and sign-extend to 32-bit the various immediates that may be used to calculate the
// target
// Uncompressed immediates
assign imm_j_type = { {12{instr[31]}}, instr[19:12], instr[20], instr[30:21], 1'b0 };
assign imm_b_type = { {19{instr[31]}}, instr[31], instr[7], instr[30:25], instr[11:8], 1'b0 };
// Compressed immediates
assign imm_cj_type = { {20{instr[12]}}, instr[12], instr[8], instr[10:9], instr[6], instr[7],
instr[2], instr[11], instr[5:3], 1'b0 };
assign imm_cb_type = { {23{instr[12]}}, instr[12], instr[6:5], instr[2], instr[11:10],
instr[4:3], 1'b0};
// Determine if the instruction is a branch or a jump
// Uncompressed branch/jump
assign instr_b = opcode_e'(instr[6:0]) == OPCODE_BRANCH;
assign instr_j = opcode_e'(instr[6:0]) == OPCODE_JAL;
// Compressed branch/jump
assign instr_cb = (instr[1:0] == 2'b01) & ((instr[15:13] == 3'b110) | (instr[15:13] == 3'b111));
assign instr_cj = (instr[1:0] == 2'b01) & ((instr[15:13] == 3'b101) | (instr[15:13] == 3'b001));
// Select out the branch offset for target calculation based upon the instruction type
always_comb begin
branch_imm = imm_b_type;
unique case (1'b1)
instr_j : branch_imm = imm_j_type;
instr_b : branch_imm = imm_b_type;
instr_cj : branch_imm = imm_cj_type;
instr_cb : branch_imm = imm_cb_type;
default : ;
endcase
end
`ASSERT_IF(BranchInsTypeOneHot, $onehot0({instr_j, instr_b, instr_cj, instr_cb}), fetch_valid_i)
// Determine branch prediction, taken if offset is negative
assign instr_b_taken = (instr_b & imm_b_type[31]) | (instr_cb & imm_cb_type[31]);
// Always predict jumps taken otherwise take prediction from `instr_b_taken`
assign predict_branch_taken_o = fetch_valid_i & (instr_j | instr_cj | instr_b_taken);
// Calculate target
assign predict_branch_pc_o = fetch_pc_i + branch_imm;
endmodule