mirror of
https://github.com/openhwgroup/cvw.git
synced 2025-06-28 09:36:01 -04:00
Added riscvsingle. Removed unnecessary coremark config. Added compiler flags for Coremark.
This commit is contained in:
parent
89ee6c778e
commit
467aac8463
10 changed files with 449 additions and 2193 deletions
33
examples/verilog/riscvsingle/riscvsingle.S
Normal file
33
examples/verilog/riscvsingle/riscvsingle.S
Normal file
|
@ -0,0 +1,33 @@
|
|||
# riscvtest.s
|
||||
# Sarah.Harris@unlv.edu
|
||||
# David_Harris@hmc.edu
|
||||
# 27 Oct 2020
|
||||
#
|
||||
# Test the RISC-V processor.
|
||||
# add, sub, and, or, slt, addi, lw, sw, beq, jal
|
||||
# If successful, it should write the value 25 to address 100
|
||||
|
||||
# RISC-V Assembly Description Address Machine Code
|
||||
main: addi x2, x0, 5 # x2 = 5 0 00500113
|
||||
addi x3, x0, 12 # x3 = 12 4 00C00193
|
||||
addi x7, x3, -9 # x7 = (12 - 9) = 3 8 FF718393
|
||||
or x4, x7, x2 # x4 = (3 OR 5) = 7 C 0023E233
|
||||
and x5, x3, x4 # x5 = (12 AND 7) = 4 10 0041F2B3
|
||||
add x5, x5, x4 # x5 = (4 + 7) = 11 14 004282B3
|
||||
beq x5, x7, end # shouldn't be taken 18 02728863
|
||||
slt x4, x3, x4 # x4 = (12 < 7) = 0 1C 0041A233
|
||||
beq x4, x0, around # should be taken 20 00020463
|
||||
addi x5, x0, 0 # shouldn't happen 24 00000293
|
||||
around: slt x4, x7, x2 # x4 = (3 < 5) = 1 28 0023A233
|
||||
add x7, x4, x5 # x7 = (1 + 11) = 12 2C 005203B3
|
||||
sub x7, x7, x2 # x7 = (12 - 5) = 7 30 402383B3
|
||||
sw x7, 84(x3) # [96] = 7 34 0471AA23
|
||||
lw x2, 96(x0) # x2 = [96] = 7 38 06002103
|
||||
add x9, x2, x5 # x9 = (7 + 11) = 18 3C 005104B3
|
||||
jal x3, end # jump to end, x3 = 0x44 40 008001EF
|
||||
addi x2, x0, 1 # shouldn't happen 44 00100113
|
||||
end: add x2, x2, x9 # x2 = (7 + 18) = 25 48 00910133
|
||||
sw x2, 0x20(x3) # mem[100] = 25 4C 0221A023
|
||||
done: beq x2, x2, done # infinite loop 50 00210063
|
||||
|
||||
|
21
examples/verilog/riscvsingle/riscvsingle.memfile
Normal file
21
examples/verilog/riscvsingle/riscvsingle.memfile
Normal file
|
@ -0,0 +1,21 @@
|
|||
00500113
|
||||
00C00193
|
||||
FF718393
|
||||
0023E233
|
||||
0041F2B3
|
||||
004282B3
|
||||
02728863
|
||||
0041A233
|
||||
00020463
|
||||
00000293
|
||||
0023A233
|
||||
005203B3
|
||||
402383B3
|
||||
0471AA23
|
||||
06002103
|
||||
005104B3
|
||||
008001EF
|
||||
00100113
|
||||
00910133
|
||||
0221A023
|
||||
00210063
|
384
examples/verilog/riscvsingle/riscvsingle.sv
Normal file
384
examples/verilog/riscvsingle/riscvsingle.sv
Normal file
|
@ -0,0 +1,384 @@
|
|||
// riscvsingle.sv
|
||||
|
||||
// RISC-V single-cycle processor
|
||||
// From Section 7.6 of Digital Design & Computer Architecture
|
||||
// 27 April 2020
|
||||
// David_Harris@hmc.edu
|
||||
// Sarah.Harris@unlv.edu
|
||||
|
||||
// run 210
|
||||
// Expect simulator to print "Simulation succeeded"
|
||||
// when the value 25 (0x19) is written to address 100 (0x64)
|
||||
|
||||
// Single-cycle implementation of RISC-V (RV32I)
|
||||
// User-level Instruction Set Architecture V2.2 (May 7, 2017)
|
||||
// Implements a subset of the base integer instructions:
|
||||
// lw, sw
|
||||
// add, sub, and, or, slt,
|
||||
// addi, andi, ori, slti
|
||||
// beq
|
||||
// jal
|
||||
// Exceptions, traps, and interrupts not implemented
|
||||
// little-endian memory
|
||||
|
||||
// 31 32-bit registers x1-x31, x0 hardwired to 0
|
||||
// R-Type instructions
|
||||
// add, sub, and, or, slt
|
||||
// INSTR rd, rs1, rs2
|
||||
// Instr[31:25] = funct7 (funct7b5 & opb5 = 1 for sub, 0 for others)
|
||||
// Instr[24:20] = rs2
|
||||
// Instr[19:15] = rs1
|
||||
// Instr[14:12] = funct3
|
||||
// Instr[11:7] = rd
|
||||
// Instr[6:0] = opcode
|
||||
// I-Type Instructions
|
||||
// lw, I-type ALU (addi, andi, ori, slti)
|
||||
// lw: INSTR rd, imm(rs1)
|
||||
// I-type ALU: INSTR rd, rs1, imm (12-bit signed)
|
||||
// Instr[31:20] = imm[11:0]
|
||||
// Instr[24:20] = rs2
|
||||
// Instr[19:15] = rs1
|
||||
// Instr[14:12] = funct3
|
||||
// Instr[11:7] = rd
|
||||
// Instr[6:0] = opcode
|
||||
// S-Type Instruction
|
||||
// sw rs2, imm(rs1) (store rs2 into address specified by rs1 + immm)
|
||||
// Instr[31:25] = imm[11:5] (offset[11:5])
|
||||
// Instr[24:20] = rs2 (src)
|
||||
// Instr[19:15] = rs1 (base)
|
||||
// Instr[14:12] = funct3
|
||||
// Instr[11:7] = imm[4:0] (offset[4:0])
|
||||
// Instr[6:0] = opcode
|
||||
// B-Type Instruction
|
||||
// beq rs1, rs2, imm (PCTarget = PC + (signed imm x 2))
|
||||
// Instr[31:25] = imm[12], imm[10:5]
|
||||
// Instr[24:20] = rs2
|
||||
// Instr[19:15] = rs1
|
||||
// Instr[14:12] = funct3
|
||||
// Instr[11:7] = imm[4:1], imm[11]
|
||||
// Instr[6:0] = opcode
|
||||
// J-Type Instruction
|
||||
// jal rd, imm (signed imm is multiplied by 2 and added to PC, rd = PC+4)
|
||||
// Instr[31:12] = imm[20], imm[10:1], imm[11], imm[19:12]
|
||||
// Instr[11:7] = rd
|
||||
// Instr[6:0] = opcode
|
||||
|
||||
// Instruction opcode funct3 funct7
|
||||
// add 0110011 000 0000000
|
||||
// sub 0110011 000 0100000
|
||||
// and 0110011 111 0000000
|
||||
// or 0110011 110 0000000
|
||||
// slt 0110011 010 0000000
|
||||
// addi 0010011 000 immediate
|
||||
// andi 0010011 111 immediate
|
||||
// ori 0010011 110 immediate
|
||||
// slti 0010011 010 immediate
|
||||
// beq 1100011 000 immediate
|
||||
// lw 0000011 010 immediate
|
||||
// sw 0100011 010 immediate
|
||||
// jal 1101111 immediate immediate
|
||||
|
||||
module testbench();
|
||||
|
||||
logic clk;
|
||||
logic reset;
|
||||
|
||||
logic [31:0] WriteData, DataAdr;
|
||||
logic MemWrite;
|
||||
|
||||
// instantiate device to be tested
|
||||
top dut(clk, reset, WriteData, DataAdr, MemWrite);
|
||||
|
||||
// initialize test
|
||||
initial
|
||||
begin
|
||||
reset <= 1; # 22; reset <= 0;
|
||||
end
|
||||
|
||||
// generate clock to sequence tests
|
||||
always
|
||||
begin
|
||||
clk <= 1; # 5; clk <= 0; # 5;
|
||||
end
|
||||
|
||||
// check results
|
||||
always @(negedge clk)
|
||||
begin
|
||||
if(MemWrite) begin
|
||||
if(DataAdr === 100 & WriteData === 25) begin
|
||||
$display("Simulation succeeded");
|
||||
$stop;
|
||||
end else if (DataAdr !== 96) begin
|
||||
$display("Simulation failed");
|
||||
$stop;
|
||||
end
|
||||
end
|
||||
end
|
||||
endmodule
|
||||
|
||||
module top(input logic clk, reset,
|
||||
output logic [31:0] WriteData, DataAdr,
|
||||
output logic MemWrite);
|
||||
|
||||
logic [31:0] PC, Instr, ReadData;
|
||||
|
||||
// instantiate processor and memories
|
||||
riscvsingle rvsingle(clk, reset, PC, Instr, MemWrite, DataAdr,
|
||||
WriteData, ReadData);
|
||||
imem imem(PC, Instr);
|
||||
dmem dmem(clk, MemWrite, DataAdr, WriteData, ReadData);
|
||||
endmodule
|
||||
|
||||
module riscvsingle(input logic clk, reset,
|
||||
output logic [31:0] PC,
|
||||
input logic [31:0] Instr,
|
||||
output logic MemWrite,
|
||||
output logic [31:0] ALUResult, WriteData,
|
||||
input logic [31:0] ReadData);
|
||||
|
||||
logic ALUSrc, RegWrite, Jump, Zero;
|
||||
logic [1:0] ResultSrc, ImmSrc;
|
||||
logic [2:0] ALUControl;
|
||||
|
||||
controller c(Instr[6:0], Instr[14:12], Instr[30], Zero,
|
||||
ResultSrc, MemWrite, PCSrc,
|
||||
ALUSrc, RegWrite, Jump,
|
||||
ImmSrc, ALUControl);
|
||||
datapath dp(clk, reset, ResultSrc, PCSrc,
|
||||
ALUSrc, RegWrite,
|
||||
ImmSrc, ALUControl,
|
||||
Zero, PC, Instr,
|
||||
ALUResult, WriteData, ReadData);
|
||||
endmodule
|
||||
|
||||
module controller(input logic [6:0] op,
|
||||
input logic [2:0] funct3,
|
||||
input logic funct7b5,
|
||||
input logic Zero,
|
||||
output logic [1:0] ResultSrc,
|
||||
output logic MemWrite,
|
||||
output logic PCSrc, ALUSrc,
|
||||
output logic RegWrite, Jump,
|
||||
output logic [1:0] ImmSrc,
|
||||
output logic [2:0] ALUControl);
|
||||
|
||||
logic [1:0] ALUOp;
|
||||
logic Branch;
|
||||
|
||||
maindec md(op, ResultSrc, MemWrite, Branch,
|
||||
ALUSrc, RegWrite, Jump, ImmSrc, ALUOp);
|
||||
aludec ad(op[5], funct3, funct7b5, ALUOp, ALUControl);
|
||||
|
||||
assign PCSrc = Branch & Zero | Jump;
|
||||
endmodule
|
||||
|
||||
module maindec(input logic [6:0] op,
|
||||
output logic [1:0] ResultSrc,
|
||||
output logic MemWrite,
|
||||
output logic Branch, ALUSrc,
|
||||
output logic RegWrite, Jump,
|
||||
output logic [1:0] ImmSrc,
|
||||
output logic [1:0] ALUOp);
|
||||
|
||||
logic [10:0] controls;
|
||||
|
||||
assign {RegWrite, ImmSrc, ALUSrc, MemWrite,
|
||||
ResultSrc, Branch, ALUOp, Jump} = controls;
|
||||
|
||||
always_comb
|
||||
case(op)
|
||||
// RegWrite_ImmSrc_ALUSrc_MemWrite_ResultSrc_Branch_ALUOp_Jump
|
||||
7'b0000011: controls = 11'b1_00_1_0_01_0_00_0; // lw
|
||||
7'b0100011: controls = 11'b0_01_1_1_00_0_00_0; // sw
|
||||
7'b0110011: controls = 11'b1_xx_0_0_00_0_10_0; // R-type
|
||||
7'b1100011: controls = 11'b0_10_0_0_00_1_01_0; // beq
|
||||
7'b0010011: controls = 11'b1_00_1_0_00_0_10_0; // I-type ALU
|
||||
7'b1101111: controls = 11'b1_11_0_0_10_0_00_1; // jal
|
||||
default: controls = 11'bx_xx_x_x_xx_x_xx_x; // non-implemented instruction
|
||||
endcase
|
||||
endmodule
|
||||
|
||||
module aludec(input logic opb5,
|
||||
input logic [2:0] funct3,
|
||||
input logic funct7b5,
|
||||
input logic [1:0] ALUOp,
|
||||
output logic [2:0] ALUControl);
|
||||
|
||||
logic RtypeSub;
|
||||
assign RtypeSub = funct7b5 & opb5; // TRUE for R-type subtract instruction
|
||||
|
||||
always_comb
|
||||
case(ALUOp)
|
||||
2'b00: ALUControl = 3'b000; // addition
|
||||
2'b01: ALUControl = 3'b001; // subtraction
|
||||
default: case(funct3) // R-type or I-type ALU
|
||||
3'b000: if (RtypeSub)
|
||||
ALUControl = 3'b001; // sub
|
||||
else
|
||||
ALUControl = 3'b000; // add, addi
|
||||
3'b010: ALUControl = 3'b101; // slt, slti
|
||||
3'b110: ALUControl = 3'b011; // or, ori
|
||||
3'b111: ALUControl = 3'b010; // and, andi
|
||||
default: ALUControl = 3'bxxx; // ???
|
||||
endcase
|
||||
endcase
|
||||
endmodule
|
||||
|
||||
module datapath(input logic clk, reset,
|
||||
input logic [1:0] ResultSrc,
|
||||
input logic PCSrc, ALUSrc,
|
||||
input logic RegWrite,
|
||||
input logic [1:0] ImmSrc,
|
||||
input logic [2:0] ALUControl,
|
||||
output logic Zero,
|
||||
output logic [31:0] PC,
|
||||
input logic [31:0] Instr,
|
||||
output logic [31:0] ALUResult, WriteData,
|
||||
input logic [31:0] ReadData);
|
||||
|
||||
logic [31:0] PCNext, PCPlus4, PCTarget;
|
||||
logic [31:0] ImmExt;
|
||||
logic [31:0] SrcA, SrcB;
|
||||
logic [31:0] Result;
|
||||
|
||||
// next PC logic
|
||||
flopr #(32) pcreg(clk, reset, PCNext, PC);
|
||||
adder pcadd4(PC, 32'd4, PCPlus4);
|
||||
adder pcaddbranch(PC, ImmExt, PCTarget);
|
||||
mux2 #(32) pcmux(PCPlus4, PCTarget, PCSrc, PCNext);
|
||||
|
||||
// register file logic
|
||||
regfile rf(clk, RegWrite, Instr[19:15], Instr[24:20],
|
||||
Instr[11:7], Result, SrcA, WriteData);
|
||||
extend ext(Instr[31:7], ImmSrc, ImmExt);
|
||||
|
||||
// ALU logic
|
||||
mux2 #(32) srcbmux(WriteData, ImmExt, ALUSrc, SrcB);
|
||||
alu alu(SrcA, SrcB, ALUControl, ALUResult, Zero);
|
||||
mux3 #(32) resultmux(ALUResult, ReadData, PCPlus4, ResultSrc, Result);
|
||||
endmodule
|
||||
|
||||
module regfile(input logic clk,
|
||||
input logic we3,
|
||||
input logic [ 4:0] a1, a2, a3,
|
||||
input logic [31:0] wd3,
|
||||
output logic [31:0] rd1, rd2);
|
||||
|
||||
logic [31:0] rf[31:0];
|
||||
|
||||
// three ported register file
|
||||
// read two ports combinationally (A1/RD1, A2/RD2)
|
||||
// write third port on rising edge of clock (A3/WD3/WE3)
|
||||
// register 0 hardwired to 0
|
||||
|
||||
always_ff @(posedge clk)
|
||||
if (we3) rf[a3] <= wd3;
|
||||
|
||||
assign rd1 = (a1 != 0) ? rf[a1] : 0;
|
||||
assign rd2 = (a2 != 0) ? rf[a2] : 0;
|
||||
endmodule
|
||||
|
||||
module adder(input [31:0] a, b,
|
||||
output [31:0] y);
|
||||
|
||||
assign y = a + b;
|
||||
endmodule
|
||||
|
||||
module extend(input logic [31:7] instr,
|
||||
input logic [1:0] immsrc,
|
||||
output logic [31:0] immext);
|
||||
|
||||
always_comb
|
||||
case(immsrc)
|
||||
// I-type
|
||||
2'b00: immext = {{20{instr[31]}}, instr[31:20]};
|
||||
// S-type (stores)
|
||||
2'b01: immext = {{20{instr[31]}}, instr[31:25], instr[11:7]};
|
||||
// B-type (branches)
|
||||
2'b10: immext = {{20{instr[31]}}, instr[7], instr[30:25], instr[11:8], 1'b0};
|
||||
// J-type (jal)
|
||||
2'b11: immext = {{12{instr[31]}}, instr[19:12], instr[20], instr[30:21], 1'b0};
|
||||
default: immext = 32'bx; // undefined
|
||||
endcase
|
||||
endmodule
|
||||
|
||||
module flopr #(parameter WIDTH = 8)
|
||||
(input logic clk, reset,
|
||||
input logic [WIDTH-1:0] d,
|
||||
output logic [WIDTH-1:0] q);
|
||||
|
||||
always_ff @(posedge clk, posedge reset)
|
||||
if (reset) q <= 0;
|
||||
else q <= d;
|
||||
endmodule
|
||||
|
||||
module mux2 #(parameter WIDTH = 8)
|
||||
(input logic [WIDTH-1:0] d0, d1,
|
||||
input logic s,
|
||||
output logic [WIDTH-1:0] y);
|
||||
|
||||
assign y = s ? d1 : d0;
|
||||
endmodule
|
||||
|
||||
module mux3 #(parameter WIDTH = 8)
|
||||
(input logic [WIDTH-1:0] d0, d1, d2,
|
||||
input logic [1:0] s,
|
||||
output logic [WIDTH-1:0] y);
|
||||
|
||||
assign y = s[1] ? d2 : (s[0] ? d1 : d0);
|
||||
endmodule
|
||||
|
||||
module imem(input logic [31:0] a,
|
||||
output logic [31:0] rd);
|
||||
|
||||
logic [31:0] RAM[63:0];
|
||||
|
||||
initial
|
||||
$readmemh("riscvtest.txt",RAM);
|
||||
|
||||
assign rd = RAM[a[31:2]]; // word aligned
|
||||
endmodule
|
||||
|
||||
module dmem(input logic clk, we,
|
||||
input logic [31:0] a, wd,
|
||||
output logic [31:0] rd);
|
||||
|
||||
logic [31:0] RAM[63:0];
|
||||
|
||||
assign rd = RAM[a[31:2]]; // word aligned
|
||||
|
||||
always_ff @(posedge clk)
|
||||
if (we) RAM[a[31:2]] <= wd;
|
||||
endmodule
|
||||
|
||||
module alu(input logic [31:0] a, b,
|
||||
input logic [2:0] alucontrol,
|
||||
output logic [31:0] result,
|
||||
output logic zero);
|
||||
|
||||
logic [31:0] condinvb, sum;
|
||||
logic v; // overflow
|
||||
logic isAddSub; // true when is add or subtract operation
|
||||
|
||||
assign condinvb = alucontrol[0] ? ~b : b;
|
||||
assign sum = a + condinvb + alucontrol[0];
|
||||
assign isAddSub = ~alucontrol[2] & ~alucontrol[1] |
|
||||
~alucontrol[1] & alucontrol[0];
|
||||
|
||||
always_comb
|
||||
case (alucontrol)
|
||||
3'b000: result = sum; // add
|
||||
3'b001: result = sum; // subtract
|
||||
3'b010: result = a & b; // and
|
||||
3'b011: result = a | b; // or
|
||||
3'b100: result = a ^ b; // xor
|
||||
3'b101: result = sum[31] ^ v; // slt
|
||||
3'b110: result = a << b[4:0]; // sll
|
||||
3'b111: result = a >> b[4:0]; // srl
|
||||
default: result = 32'bx;
|
||||
endcase
|
||||
|
||||
assign zero = (result == 32'b0);
|
||||
assign v = ~(alucontrol[0] ^ a[31] ^ b[31]) & (a[31] ^ sum[31]) & isAddSub;
|
||||
|
||||
endmodule
|
Loading…
Add table
Add a link
Reference in a new issue