neorv32/sw/example/demo_onewire/main.c
2024-12-01 21:59:16 +01:00

268 lines
8.5 KiB
C

// ================================================================================ //
// The NEORV32 RISC-V Processor - https://github.com/stnolting/neorv32 //
// Copyright (c) NEORV32 contributors. //
// Copyright (c) 2020 - 2024 Stephan Nolting. All rights reserved. //
// Licensed under the BSD-3-Clause license, see LICENSE for details. //
// SPDX-License-Identifier: BSD-3-Clause //
// ================================================================================ //
/**********************************************************************//**
* @file demo_onewire/main.c
* @author Stephan Nolting
* @brief Demo program for the NEORV32 1-Wire interface controller (ONEWIRE).
**************************************************************************/
#include <neorv32.h>
#include <string.h>
// device search algorithm
#include "onewire_aux.h"
/**********************************************************************//**
* @name User configuration
**************************************************************************/
/**@{*/
/** UART BAUD rate */
#define BAUD_RATE 19200
/**@}*/
// Constants
const char hex_c[16] = {'0','1','2','3','4','5','6','7','8','9','a','b','c','d','e','f'};
// Prototypes
void show_help(void);
void show_1wire_commands(void);
void read_byte(void);
void write_byte(void);
void scan_bus(void);
/**********************************************************************//**
* Main function
*
* @note This program requires the ONEWIRE and UART0 modules. Only non-blocking ONEWIRE functions are used.
*
* @return !=0 if setup error
**************************************************************************/
int main() {
// capture all exceptions and give debug info via UART0
neorv32_rte_setup();
// setup UART at default baud rate, no interrupts
neorv32_uart0_setup(BAUD_RATE, 0);
// check if ONEWIRE is implemented at all
if (!neorv32_onewire_available()) {
neorv32_uart0_printf("Error! ONEWIRE module not synthesized!\n");
return -1;
}
// intro
neorv32_uart0_printf("\n\n<<< NEORV32 1-Wire Interface (ONEWIRE) Demo Program >>>\n\n");
// info
neorv32_uart0_printf("ONEWIRE FIFO depth: %u entries\n", neorv32_onewire_get_fifo_depth());
// configure ONEWIRE base time
neorv32_uart0_printf("Configuring ONEWIRE time base...\n");
uint32_t t_base_ref = 10000; // reference: t_base = 10000ns = 10us
uint32_t t_base_real = neorv32_onewire_setup(t_base_ref);
neorv32_uart0_printf("t_base: requested = %u ns\n"
" actual value = %u ns\n"
" difference = %i ns\n", t_base_ref, t_base_real, ((int)t_base_ref)-((int)t_base_real));
// check bus state - should be high (pulled-high by the pull-up resistor)
neorv32_uart0_printf("Checking bus state... ");
if (neorv32_onewire_sense() != 0) { // bus high?
neorv32_uart0_printf("OK\n");
}
else {
neorv32_uart0_printf("FAILED! Short circuit? Missing pull-up resistor?\n");
}
neorv32_uart0_printf("Starting interactive user console...\n\n");
// show all available commands
show_help();
// console loop
while(1) {
neorv32_uart0_printf("CMD:> ");
char cmd = neorv32_uart0_getc();
neorv32_uart0_putc(cmd); // echo
neorv32_uart0_printf("\n");
if (cmd == 'h') {
show_help();
}
else if (cmd == 'c') {
show_1wire_commands();
}
else if (cmd == 'x') {
neorv32_uart0_printf("Sending reset pulse.\n");
if (neorv32_onewire_reset_blocking()) { neorv32_uart0_printf("No presence detected.\n"); }
else { neorv32_uart0_printf("Device presence detected!\n"); }
}
else if (cmd == '0') {
neorv32_uart0_printf("Writing 0-bit\n");
neorv32_onewire_write_bit_blocking(0);
}
else if (cmd == '1') {
neorv32_uart0_printf("Writing 1-bit\n");
neorv32_onewire_write_bit_blocking(1);
}
else if (cmd == 'b') {
neorv32_uart0_printf("Read bit = %c\n", '0' + (neorv32_onewire_read_bit_blocking() & 1));
}
else if (cmd == 'r') {
read_byte();
}
else if (cmd == 'w') {
write_byte();
}
else if (cmd == 'p') {
if (neorv32_onewire_sense()) { neorv32_uart0_printf("Bus is HIGH.\n"); }
else { neorv32_uart0_printf("Bus is LOW.\n"); }
}
else if (cmd == 's') {
scan_bus();
}
else if ((cmd == 10) || (cmd == 13)) { // line break (enter)
continue;
}
else {
neorv32_uart0_printf("Invalid command. Type 'h' to see the help menu.\n");
}
}
return 0; // should never be reached
}
/**********************************************************************//**
* Show help menu.
**************************************************************************/
void show_help(void) {
neorv32_uart0_printf("Available commands:\n"
" h: Show this text\n"
" c: Show standard 1-Wire commands\n"
" x: Generate reset pulse and check for device presence\n"
" 0: Write single '0' bit\n"
" 1: Write single '1' bit\n"
" b: Read single bit\n"
" r: Read full-byte\n"
" w: Write full-byte\n"
" p: Probe current bus state\n"
" s: Scan bus (get IDs from all devices)\n");
}
/**********************************************************************//**
* Show standard 1-wire commands.
**************************************************************************/
void show_1wire_commands(void) {
neorv32_uart0_printf("Standard 1-wire command bytes:\n"
" 0x33 - Read ROM (for identification)\n"
" 0x55 - Match ROM (access specific device)\n"
" 0xF0 - Search ROM (for device search algorithm)\n"
" 0xCC - Skip ROM (skip addressing)\n"
" 0xF5 - PIO read access\n"
" 0x5A - PIO write access\n");
}
/**********************************************************************//**
* Read full byte from bus.
**************************************************************************/
void read_byte(void) {
int i;
uint8_t tmp = neorv32_onewire_read_byte_blocking();
neorv32_uart0_printf("Read byte = 0b");
// print binary
for (i=7; i>=0; i--) {
if (tmp & (1 << i)) {
neorv32_uart0_putc('1');
}
else {
neorv32_uart0_putc('0');
}
}
// print hexadecimal
neorv32_uart0_printf(" (0x");
neorv32_uart0_putc(hex_c[(tmp >> 4) & 0x0f]);
neorv32_uart0_putc(hex_c[(tmp >> 0) & 0x0f]);
neorv32_uart0_printf(")\n");
}
/**********************************************************************//**
* Write full byte to bus.
**************************************************************************/
void write_byte(void) {
char terminal_buffer[4];
// enter address
neorv32_uart0_printf("Enter write data (2 hex chars): 0x");
neorv32_uart0_scan(terminal_buffer, 2+1, 1); // 2 hex chars for address plus '\0'
uint8_t wdata = (uint8_t)neorv32_aux_hexstr2uint64(terminal_buffer, strlen(terminal_buffer));
// write to bus
neorv32_uart0_printf("\nWriting 0x");
neorv32_uart0_putc(hex_c[(wdata >> 4) & 0x0f]);
neorv32_uart0_putc(hex_c[(wdata >> 0) & 0x0f]);
neorv32_onewire_write_byte_blocking(wdata);
neorv32_uart0_printf("\n");
}
/**********************************************************************//**
* Scan bus for devices and print IDs.
**************************************************************************/
void scan_bus(void) {
neorv32_uart0_printf("Scanning bus...\n");
// APPLICATION NOTE 187 "1-Wire Search Algorithm" by Maxim Integrated
// modified for the NEORV32 Processor
int res, i, cnt;
cnt = 0;
res = OWFirst();
while (res) {
neorv32_uart0_printf(" > Family code: 0x");
neorv32_uart0_putc(hex_c[(ROM_NO[0] >> 4) & 0x0f]);
neorv32_uart0_putc(hex_c[(ROM_NO[0] >> 0) & 0x0f]);
neorv32_uart0_printf(", ID: ");
for (i=6; i>0; i--) {
neorv32_uart0_putc('0');
neorv32_uart0_putc('x');
neorv32_uart0_putc(hex_c[(ROM_NO[i] >> 4) & 0x0f]);
neorv32_uart0_putc(hex_c[(ROM_NO[i] >> 0) & 0x0f]);
if (i != 1) {
neorv32_uart0_putc(' ');
}
}
neorv32_uart0_printf(", CRC: 0x");
neorv32_uart0_putc(hex_c[(ROM_NO[7] >> 4) & 0x0f]);
neorv32_uart0_putc(hex_c[(ROM_NO[7] >> 0) & 0x0f]);
neorv32_uart0_printf("\n");
cnt++;
res = OWNext();
}
neorv32_uart0_printf("Devices found: %u\n", cnt);
}